
ASTERICS - An Open Toolbox for
Sophisticated FPGA-Based Image Processing

Michael Schaeferling∗, Markus Bihler∗, Matthias Pohl†, Gundolf Kiefer∗

∗University of Applied Sciences Augsburg †Heidelberger Druckmaschinen AG
Dept. of Computer Science Dept.: Control Systems and Electronic Components

An der Hochschule 1 Kurfürstenanlage 52-60
86161 Augsburg, Germany 69115 Heidelberg, Germany

Email: {gundolf.kiefer, michael.schaeferling } Email: matthias.pohl@heidelberg.com
@hs-augsburg.de

Abstract—Image processing on embedded platforms is still
a challenging task, especially when implementing extensive
computer vision applications. Field-programmable gate arrays
(FPGAs) offer a suitable technology to accelerate image process-
ing by customized hardware. Most available image processing
frameworks for FPGAs concentrate on pixel-based modules for
simple preprocessing tasks. This paper presents a framework
which also aims to cover the integration of higher-level al-
gorithms. Therefore, it offers modules and interfaces to per-
form window-oriented filter operations and incorporate software-
defined operations. Several complex, higher-level algorithms, such
as undistortion and rectification, natural feature description, edge
detection and Hough transform have been adopted and integrated
into the frameworks image processing flow. This paper describes
the framework, its interfaces and some of the existing modules.
Finally, some applications which were already implemented using
this framework are presented.

Keywords: real-time image processing, computer vision, sys-
tem on chip, programmable logic, image rectification, corner
detection, Hough transform, edge detection, natural features

I. INTRODUCTION

Computer vision is a growing area of research and de-
velopment with numerous applications in the automotive,
medical systems, and consumer electronics industries. The
involved algorithms range from simple image preprocessing
to sophisticated interpretation tasks. Especially in the field
of embedded systems, available processing power, memory
bandwidth and power resources are very limited, all of which
would be needed to perform real-time image processing.
Using dedicated hardware is a well-known way to accelerate
signal processing. Field Programmable Gate Arrays (FPGAs)
provide the required flexibility to create hardware structures
to optimally fit a given algorithm and to efficiently exploit
parallelism. Additionally, growing capacities make FPGAs a
seminal platform with the possibility to integrate even more
complex image processing tasks in the future.

Computer vision systems usually contain a chain of more
or less common operations, starting with simple image filters
and ending with complex interpretation algorithms to extract
meaningful information such as ”a traffic sign X is visible at
location Y in the image”. In general, the operations can be

divided into four classes, namely a) point-based, b) window-
based, c) semi-global and d) global operations, the character-
istics of which are summarized in Figure 1 [1][2].

Fig. 1: Operation classes in image processing

In a point-based operation, each output pixel depends on
the corresponding pixel of the input image only. Examples
are brightness adjustment or thresholding. In a window-based
operation, each output pixel depends on a set of pixels located
around the corresponding pixel of the input image. Examples
are noise filters or simple edge filters. Both global and semi-
global operations are typically complex tasks and defined
in software. Unlike global operations, semi-global (or patch-
based) operations only use a defined area of the image to
gather high-level information, for example to perform feature
descriptor calculation in object recognition.

While current commercial frameworks mainly address
pixel-based operations, the proposed ASTERICS (”Augsburg
Sophisticated Toolbox for Embedded Real-time Image Crunch-
ing Systems”) framework aims to become an open toolbox
for all of the four classes of image processing operations.
Using defined, simple interfaces and a fine-grained module
structure, the ASTERICS framework also aims to simplify
and accelerate the development process. Thus, it contains a
library of hardware modules, connected via unified interfaces

embedded world Conference 2015
www.embedded-world.eu



for point and window operations. Window-based operations
are implemented by an efficient, semi-automatically generated
2D pipeline structure. Semi-global and global operations are
handled by a hardware-software-codesign, where hardware
structures seamlessly extract and provide data for software-
based processing. So-called Patch Processing Units (PPUs),
implemented as small standard CPUs or specialized hard-
ware, perform semi-global operations. Global operations are
processed by one or more soft- or hard-core CPUs. All
components together form an image processing SoC, which
may be implemented in an FPGA device or an ASIC.

So far, several demonstration applications and complex im-
age processing chains have successfully been implemented us-
ing the framework. These include a real-time implementation
of the SURF (”Speeded Up Robust Features”) feature detector,
the Canny edge detector, a configurable Hough transform
module suitable for mid-size FPGAs, and a module to perform
real-time image distortion removal and stereo rectification.

An overview on related work towards image processing
frameworks for reconfigurable hardware is given in Section II.
The basic concepts and interfaces of the ASTERICS framework
are described in detail in Section III. Section IV gives an
overview on selected modules. Some applications which were
implemented using the ASTERICS framework are described
in Section V. Section VI concludes the work and gives some
future prospects.

II. RELATED WORK

There are several image processing frameworks proposed
in the field of programmable logic. A framework to prepro-
cess image data within distinct processing modules to finally
estimate depth information is presented by Geisen et. al. [3].
Kasik and Peterek present another video processing toolbox,
correcting and applying effects on image data [4]. Toolkits for
image processing are offered amongst other IP cores for image
(de)coding for example by Xilinx and Altera [5][6]. By design,
these architectures only cover pixel-based and/or global image
operations as they typically only support basic pixel-based
modules. Structures to efficiently perform window-based and
semi-global operations are not specifically addressed.

SoC-Frameworks can be used to build SoPC architectures
with a main system bus to connect one or several CPUs,
memories and peripheral components. Xilinx therefore pro-
vides the Embedded Development Kit and the Vivado Design
Suite, where both soft-core (MicroBlaze) and hard-core (ARM)
processors can be integrated into the system. With the SoPC
Builder and the SoC Embedded Design Suite, Altera also
provides CAD software to build SoPCs incorporating their
Nios II soft-core processor or an ARM hard-core processor.

Various bus standards for SoC architectures have been
established, such as the PLB (CoreConnect, IBM) or the
Avalon (Altera) bus, traditionally used within Xilinx and
Altera SoPCs, respectively. The AXI (AMBA, ARM) bus
nowadays is used when the SoPC incorporates an ARM
processor, with Xilinx using its streaming capabilities in their
image processing framework. As an open-source alternative,

the Whishbone standard offers a relatively simple interface to
connect master and slave components. It can be implemented
in different topologies, for example as shared bus or crossbar
switch, but also a dataflow topology allowing to chain up mul-
tiple processing elements connected pairwise by streaming-like
interfaces.

III. ASTERICS: CONCEPTS AND INTERFACES

The ASTERICS framework is designed as a modular build-
ing set to perform various real-time image processing tasks.
Figure 2 depicts a typical layout of an image processing system
supported by the framework. It consists of several image
processing modules, each performing a dedicated processing
task. The framework features different interfaces to connect
the incorporated modules and to pass image data within the
pipeline from the data source to a data sink. Especially the
kernel-based interface, featuring a novel 2D Window Pipeline
module, and the software interface for semi-global image
processing enable the framework to realize image processing
pipelines covering all four classes listed in Figure 1.

A. Pixel-based Interface

In many applications, the image data flow starts with pixel-
based processing, which is performed within the framework by
a set of consecutive Filter Modules. First, image data needs
to be acquired, for example from an image sensor or from
system memory. The subsequent Filter Modules perform basic
filter operations, such as cropping or contrast adjustment, in
order to preprocess the image for the application at hand. An
overview on selected modules is given in Section IV-A. Filter
modules are connected by a streaming interface named Real-
Time Pixel Bus (RTPB). An RTPB transports pixel-related data
along with meta information, such as data valid and frame
synchronization signals. Furthermore, the interface supports
backpressure as a method to slow down or stall data traffic.
Thus, a module can generate a stall signal which is passed to
the preceding module, indicating that the predecessor should
not pass any data from the next cycle on, until the signal is
revoked.

B. Kernel-based Interface

Kernel- or window-based processing, as, for example, local
filters or other locally narrow operations, can efficiently be
performed using a sliding window buffer [1][7]. The principle
of the sliding window technique is depicted in Figure 3.
The window buffer stores a number of consecutive image
lines, with a rectangular part (the so-called window) being
implemented by registers, so that they are freely accessible.
With each pixel shifted into the image data buffer, the window
virtually slides forward within the image. A Window Module
implements a specific window-based operation using multiple
pixels. It is connected to the image data buffer to access all
required image data. Thus, the Window Module continuously
calculates a new result for each image position.

ASTERICS introduces the concept of a configurable 2D
Window Pipeline Module, which incorporates an enhanced

embedded world Conference 2015
www.embedded-world.eu



Fig. 2: Exemplary structure of an image processing system

Fig. 3: Principle of the sliding window technique

sliding window buffer and an arbitrary number of Window
Modules. The output of a Window Module is either written
back to the pipeline to be further processed by other Window
Modules or passed to a subsequent Filter Module.

Figure 4 depicts an exemplary 2D Window Pipeline with two
Window Modules. The first 5x5 filter applies Gaussian filtering
to the incoming pixel data. Its result is written back into the
pipeline at the position marked by ⊗. From that point, the
2D pipeline (additionally) transports the filtered data (marked
grey). The second Window Module (3x3) applies the vertical
Sobel operator, where the top and bottom rows are weighted, to
detect vertical edges. As a whole, the 2D Window Pipeline uses
the pixel-based interface to connect to preceding and following
Filter Modules.

In order to support the system designer at this point, the
framework provides a tool to semi-automatically generate
and optimize the data pipeline structure, offering a trade-off
between latency and resource utilization. First, a graphical
editor is used to place the Window Modules within the pipeline.
Second, the tool generates the pipeline structure as a combina-
tion of slice registers and Block-RAM FIFOs, as slice registers
are needed to access all required image data simultaneously
and Block-RAM is used to buffer data. Detailed information
on the kernel-based interface can also be found in [2].

Fig. 4: Exemplary 2D Window Pipeline, implementing Gaus-
sian filtering and the Sobel operator

C. Software Interface

Semi-global and global operations are usually defined by
complex algorithms and may need to be implemented in
software. The ASTERICS framework offers methods to handle
both classes efficiently.

Semi-global operations are applied to selected regions-of-
interest or patches of the original image. For this, the frame-
work provides Patch Extractor Modules to identify and extract
relevant image patches from the data stream of the 2D Window
Pipeline. The extracted data is passed to an array of small,
dedicated Patch Processing Units (PPUs). These PPUs are
capable to execute software algorithms and can operate fully
parallel without interfering with each other. The assignment of
subtasks to PPUs is coordinated by the Patch Dispatcher. Each
PPU contains a fast local memory which is also accessible by
the Patch Dispatcher to allow fast data transfers to the PPU.
The operation’s results, which often do not represent image
pixels but rather some kind of interpretation of the actual
image data, are passed to the memory of the main system.

Finally, high-level algorithms, where global operations are
also defined in software, may be applied to results gained so
far. The processing chain as yet described can be incorporated
into a common System-on-Chip structure with one or more
Master CPUs to execute these algorithms. Further details on

embedded world Conference 2015
www.embedded-world.eu



Pixel-based modules
Input and Output modules

Capture from image sensors
Memory Reader
Memory Writer

Adapters and format converters
Crop
Scaler
Synchronization
Stream-Selector
Collect / Disperse
Join / Split

Standard Filters
Brightness adjustment
Contrast adjustment
Difference image calculation
Histogram

Window-based modules
FIR modules (Gaussian filter, ...)
Bayer-RGB-Converter

Advanced processing
Non-Linear Image Transformations
Natural Feature Detector
Canny Edge Detector
Hough Transform

System-level modules
Video Output
USB Interface

TABLE I: Provided modules

the software interface are described in [2].

IV. ASTERICS: MODULES

The ASTERICS framework offers a catalogue of modules
for (mostly) real-time image processing, ranging from simple
preprocessing tasks to complex image transformation and
analysis, and is open to be enriched by future developments.
Table I gives an overview on some existing modules. The next
subsection gives a brief overview on the catalogue and its
standard modules. After that, some of the more sophisticated
modules are described in detail.

A. Standard Modules for Pixel- and Window-based Opera-
tions

For image acquisition, the framework provides interfaces to
capture data from image sensors of various vendors. Frames
can either be captured in continuous mode or triggered in
a single shot mode, which may be needed for stereo vision
applications. Data may also be acquired by reading from the
systems main memory using the Memory Reader module.
Conversely, results can be stored there using the Memory
Writer interface module. Current implementations support
PLB or AXI bus interfaces, but can easily be extended towards
other bus standards.

A set of adapters and format converters help to optimally
adjust the image data pipeline, which is not fixed to a set
of predefined image data types. Image dimensions can be
changed by cropping or scaling image data. Synchronization
of image data streams, for example needed for stereo vision
applications, is also supported. Data flow management is per-
formed by another set of modules. The stream selector module

can be used to switch between different data processing stages.
Also, data streams may be joined or split, for example to
accompany corresponding pixels of stereo images into a single
data stream. Furthermore, consecutive pixels of the image data
stream can be collected and packed into a single data word.
This can be used, for example, for parallel pixel processing or
to efficiently transfer four 8-bit grayscale pixels using a 32-bit
memory writer module. Conversely, another module is capable
to disperse such packed data words to obtain sequenced pixel
values again.

A set of filters for standard operations is implemented,
such as inverting image color data or adjusting brightness and
contrast by addition or multiplication of pixel data with a fixed
value. For image data analysis, the framework offers a module
to calculate the image histogram, which may be used as a basis
for the afore mentioned image enhancement tasks.

The framework provides a method to efficiently integrate
window-based operations into the processing pipeline, as for
example FIR filters. Existing modules for this class of image
operations perform Gaussian blurring or apply the Sobel op-
erator to image data. When dealing with color image sensors,
image data is often provided in a Bayer pattern format. As
many image processing algorithms are designed to handle
RGB image data, the Bayer-to-RGB converter module can be
used for conversion.

Data visualization can be performed on system level, using
the comprised video output module. It outputs image data
to a monitor, where the module supports both analog and
digital data output. Augmentation of the displayed image
data is supported by the modules software library to draw
elements to an overlay, for example lines, circles or text. The
framework also provides a USB interface module, for example
to connect an ASTERICS enabled FPGA-based camera with a
host system. A flexible software interface supports the system
developer to link the host with the ASTERICS system.

Besides the afore mentioned standard modules, the AS-
TERICS framework also incorporates more complex modules
for image analysis and more extensive transformations, as
described in the following sections.

B. Non-Linear Image Transformations

Many computer vision applications use stereo images, for
example, to gain depth information of the observed scene.
Therefore it is important to remove lens distortion and to
rectify the stereo image pair, as depicted in Figure 5.

Figure 6 shows another exemplary transformation. The
camera sensor captures a whiteboard from a displaced point of
view, which would preserve an observer to properly perceive
the content. Image data is now undistorted and transformed in
a way, so that the resulting output image shows the information
as if the camera was located directly in front of it.

For all these non-linear image transformations, the frame-
work features the NITRA (Non-linear Image TRAnsformation)
module. The NITRA module comprises an optimized architec-
ture (depicted in Figure 7) to apply these transformations in

embedded world Conference 2015
www.embedded-world.eu



(a)

(b)

(c)

Fig. 5: Example images showing raw (a), undistorted (b) and
rectified (c) image pairs of a stereo camera setup

Fig. 6: Exemplary image transformation: Whiteboard remap-
ping

real-time and allows a trade-off between accuracy and resource
utilization.

Unlike other approaches, the NITRA module does not need
expensive look-up tables for translating pixel coordinates. The
Coordinate Generator calculates exact sampling coordinates
based on higher-degree polynomial approximations. Incoming
pixel data is stored in a local line buffer. The samples are read
from the buffer, interpolated and written to the main memory.
Due to the pipeline structure of the module, it is able to process
a new pixel in each clock cycle. Thus, it features real-time
capability and is suitable for high-resolution cameras with high
pixel clock rates. More detailed information on this module
is presented in [8]. An application for the NITRA module is
presented in Section V-A.

C. Natural Feature Detection

Feature detection is a fundamental processing step for
object recognition or optical tracking tasks, as often uti-

Fig. 7: Structure of the NITRA module for real-time non-linear
image transformations

lized in augmented reality applications. The prominent SURF
(”Speeded Up Robust Features”) feature detector [9] has been
implemented as a real-time capable module of the ASTERICS
framework, making extensive use of the 2D Window Pipeline
concept introduced in Section III-B. Figure 8 depicts the
Window Modules, and their arrangement in the 2D Win-
dow Pipeline. In the underlying algorithm, approximations of
Gaussian filters are applied to the original grayscale image
on different scale levels (Hessian Determinant Calculation,
HDC). Non-maximum-suppression is used to determine a
sole result for each image coordinate. In the module, four
HDC filter responses are calculated by the incorporated Win-
dow Modules for four scale levels in parallel, while a Non-
Maximum-Suppression Window Module directly calculates the
final result. This structure allows to process a new pixel in
one clock cycle, which makes this module real-time capable
even for higher resolution (e.g. HD) images. It represents one
of the fastest SURF detector implementations published so
far [2]. More information on the implementation is provided
in [2], while Section V-B gives an example of a full object
recognition application on a smart camera using this module.

Fig. 8: Structure of the SURF detector module, used for real-
time natural feature detection

D. Canny Edge Detector

Edge detection is an important preprocessing step for com-
puter vision tasks like line detection or model-based object
recognition. The ASTERICS framework provides an implemen-
tation of the Canny edge detection algorithm [10]. It consists
of the four steps (a) Gaussian blurring, (b) calculation of a

embedded world Conference 2015
www.embedded-world.eu



gradient image with the Sobel operator, (c) non-maximum-
suppression and (d) thresholding. These steps are implemented
by pixel- and window-based filter modules as depicted in
Figure 9. Originally, step (d) of the Canny edge detection
algorithm applies a thresholding algorithm with hysteresis on
the result of step (c). That would cause a latency of one
frame, as it is required to step over the image data forwards
and backwards. In the current implementation, step (d) is
optimized for a small latency of 3 image rows and 11 pixels.
The hysteresis is processed in one direction only. A detailed
description of the hardware implementation of the Canny edge
detection algorithm can be found in [11]. In Section V-C,
a demonstrator system for the Hough transform using this
module is described.

Fig. 9: Structure of the Canny edge detection module

E. Hough Transform

Detecting straight lines in an image is a demanding task in
computer vision. One approach is the Hough transform [12],
which can be used to detect lines, circles or any other arbitrary
shapes in an edge image, by mapping the global detection
problem to a more easily solved local peak detection problem
in a parameter space [13]. The ASTERICS implementation
calculates the parameter space of straight lines with the θ-
ρ parametrization, where θ represents the angle of a line’s
normal and ρ represents the algebraic distance of a straight
line to the coordinate system’s origin [14]. Each edge pixel
in the input image is regarded as an intersection point of a
family of straight lines and the parameters of every straight
line are calculated. Each assumed straight line causes one vote
in the parameter space. After processing each edge pixel, local
maxima in the parameter space image represent straight lines
in the input image.

Figure 10 shows the structure of the Hough Module. The
input is a binary edge image, as produced by the Canny
Module, described in Section IV-D. The Coordinate Counter
keeps track of the input image’s pixel coordinates, which
are required for the Hough transform. Then, the coordinates
of the edge pixels are written into the Edge Buffer. The
calculation of the parameter space image is implemented
in the Accumulator Array, storing it in Block-RAM. Using
parameters, the resolution of the parameter space is adjusted.
The Controller coordinates the calculation and the read out
process of the parameter space image.

As the Hough Module is able to buffer the edge pixels and
additionally only a fraction of an edge image’s pixels actually
represent edges, the Accumulator Array does not have to
process one pixel per clock cycle. It consists of a configurable

Fig. 10: Structure of the Hough Module

number of Accumulator Cells, splitting the parameter space
image into independent sections, which are calculated in
parallel. Within each Accumulator Cell, a configurable number
of parameter space image rows are processed and stored.
The Accumulator Cells are able to process one vote for one
parameter space image row per clock cycle. Thereby, the level
of parallelization of the Hough Module is configurable by
the number of parameter space image rows processed per
Accumulator Cell. The more Accumulator Cells are used, the
more votes are calculated in parallel.

V. APPLICATIONS

The following subsections give an overview on several
complete image processing applications implemented using
the ASTERICS framework on FPGA-based platforms.

A. Image Distortion Removal and Stereo Rectification

An image processing system was developed in association
with FORTecH Software GmbH to gain undistorted and rec-
tified images from captured raw image data, as depicted in
Figure 5. These ideal image pairs are passed to a host system
which performs gesture recognition and gaze analysis. The
involved algorithms are based on analyzing stereo image pairs
to gain gesture and gaze information, as depicted in Figure
11.

In this system, two stereo cameras (Aptina MT9V034) are
triggered synchronously and image data is transferred directly
into a Spartan 3E 1600 FPGA. Within the FPGA, both image
data streams are processed with a resolution of 640x480
pixels in parallel by performing image transformation tasks
within two instances of the NITRA module. The undistorted
and rectified images are transferred via the ASTERICS USB
interface to the host system, where the stereo images are used
to perform further image processing tasks.

In this application, the incorporated NITRA modules were
configured to guarantee a maximum total error of 0.3 pixels.
Using this configuration, one NITRA module occupies just
12% of available Spartan-3 slices (1810 slices), 31% of Block-
RAM (160 kBit) and 18% of the provided multiplier units (3x

embedded world Conference 2015
www.embedded-world.eu



Fig. 11: Gesture recognition and gaze analysis, based on stereo
images

MULT18) within the cameras’ low-cost Spartan 3E FPGA.
Further details on the application and implementation details
can be found in [8].

B. Object Recognition using SURF Feature Extraction

A complete object recognition system, based on the well-
known SURF algorithm which performs natural feature detec-
tion and description, was implemented in a single mid-sized
FPGA using the ASTERICS framework. A mobile demon-
strator platform has been developed for the detection and
identification of objects in a live image stream which, for
example, can be used as a mobile museum guide as depicted
in Figure 12.

Fig. 12: SURF-based mobile museum guide

For this system, an FPGA-based camera was chosen for
implementation. It features a Spartan-6 LX150 FPGA and an
image sensor (Aptina MT9V034) for image capture while a
VGA display directly connects to the SoPCs video output
module to augment the original camera image with object
information.

The structure of the system is depicted in Figure 13. It
shows how all the image processing steps are covered by
the framework. Image capture and preprocessing is realized

within pixel-based processing modules. Following, compu-
tationally extensive real-time critical operations are handled
within the frameworks structures for window- and patch-based
processing. The SURF detector stage is realized using the
2D Window Pipeline structure (see Section IV-C) while the
software-based descriptor stage benefits from the concept of
parallel semi-global operations using an array of independent
PPUs. Based on the information gained so far, the SoPCs
Master CPU executes the matching stage to finally identify
and highlight found objects in the output image. More details
on this application and implementation details are described
in [2].

Fig. 13: Structure of the object recognition system, fully
integrated in a single Spartan-6 LX150 FPGA

C. Line Extraction using Hough Transform

To show the capabilities of the Canny Module and the
Hough Module, a demonstrator system has been developed.
It is able to visualize the input image, the edge image of
the Canny Module and the parameter space image, calculated
by the Hough Module. Figure 14 shows the structure of the
demonstrator system. The Output Multiplexor is configured
via software drivers to choose a pixel stream of one of the
three modules and forwards it to the Memory Writer memory.
The Video Output module reads the output image data from the
system memory and visualizes it by means of a VGA interface.
Figure 15 shows three output images of the demonstrator
system.

Fig. 14: Structure of the demonstrator system for the Canny
Module and the Hough Module

embedded world Conference 2015
www.embedded-world.eu



(a) (b)

(c)

Fig. 15: Exemplary output images of the demonstrator system;
(a) input image (640x480 pixels); (b) edge image (640x480
pixels); (c) parameter space (512x320 pixels)

Several versions with different configurations of the Hough
Module where implemented on a Xilinx Spartan-6 LX150
FPGA, equipped with an Aptina MT9V034 image sensor. The
input image and the edge image calculated by the Canny
Module have a resolution of 640x480 pixels. Less than 1%
(189 slices) of the available Spartan-6 slices and 1.5% of
Block-RAM (64 kBit) are used by the Canny Module. The
resource utilization of the Hough Module and the resolution
of the parameter space image depend on the Hough Module’s
configuration. The highest possible resolution, implementing
the Hough Module in a Spartan-6 LX150 is 512x848 pixels
with a depth of 9 bits and an Accumulator Array consisting
of 53 Accumulator Cells. 10% of available Spartan-6 slices
(2334 slices), 90% of Block-RAM (3832 kBit) and 59% of
the multiplier units (106x MULT18) are occupied. The small-
est implemented configuration has a parameter space image
resolution of 128x128 pixels with a depth of 9 bit divided into
4 Accumulator Cells. Therefore, the Hough Module uses 1%
of available Spartan-6 slices (234 slices), 5% of Block-RAM
(176 kBit) and 4% of the multiplier units (8x MULT18). These
results show the flexibility of the Hough Module. Depending
on the requirements, it allows a trade-off between a high
Hough space resolution and a high level of parallelization or
a low hardware utilization.

VI. CONCLUSION

This paper introduced the ASTERICS framework, a flexible
and efficient framework for computer vision and related image
processing tasks. It covers simple pixel-oriented operations and
window operations, but also supports complex semi-global and
global operations. The underlying module library enables the
system designer to efficiently build systems for sophisticated
image processing tasks. Various applications implemented so

far demonstrate the capabilities of the framework. Future work
deals with rapid prototyping support and extensions of the
module library towards shape-oriented computer vision tasks
and advanced industrial inspections.

ACKNOWLEDGEMENT

Parts of this work have been supported by the German
Federal Ministry of Education and Research (BMBF), grant
number 17N3709.

The authors would like to thank FORTecH Software GmbH,
Rostock, for cooperation and valuable discussions towards the
implementation of non-linear image transformations.

We are also grateful for the cooperation with the Augsburger
Puppenkiste, which provided a real-world object recognition
scenario.

REFERENCES

[1] C. T. Johnston, K. T. Gribbon, and D. G. Bailey, “Implementing Image
Processing Algorithms on FPGAs,” in Proceedings of the Eleventh
Electronics New Zealand Conference (ENZCon), 2004, pp. 118–123.

[2] M. Pohl, M. Schaeferling, and G. Kiefer, “An efficient FPGA-based
hardware framework for natural feature extraction and related Computer
Vision tasks,” in 24th International Conference on Field Programmable
Logic and Applications (FPL), Sept 2014, pp. 1–8.

[3] P. Greisen, S. Heinzle, M. Gross, and A. Burg, “An FPGA-based
processing pipeline for high-definition stereo video,” EURASIP Journal
on Image and Video Processing, vol. 2011, no. 1, p. 18, 2011. [Online].
Available: http://jivp.eurasipjournals.com/content/2011/1/18

[4] V. Kasik and T. Peterek, “Video Processing Toolbox for FPGA Powered
Hardware,” in International Conference on Software and Computer
Applications (IPCSIT), 2011, pp. 242–246.

[5] Xilinx Inc., “Video and Image Processing Pack,” 2014. [Online].
Available: http://www.xilinx.com/products/intellectual-property/EF-DI-
VID-IMG-IP-PACK.htm

[6] Altera Corp., “Video and Image Processing
Suite MegaCore Functions,” 2014. [Online]. Avail-
able: http://www.altera.com/products/ip/dsp/image video processing/m-
alt-vipsuite.html

[7] M. Schmidt, M. Reichenbach, and D. Fey, “A Generic VHDL Template
for 2D Stencil Code Applications on FPGAs,” in 15th IEEE Inter-
national Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing Workshops (ISORCW), April 2012, pp. 180–187.

[8] M. Pohl, M. Schaeferling, G. Kiefer, P. Petrow, E. Woitzel,
and F. Papenfuß, “Leveraging polynomial approximation for non-
linear image transformations in real time,” Computers & Electrical
Engineering, vol. 40, no. 4, pp. 1146 – 1157, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0045790613003273

[9] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “SURF: Speeded Up
Robust Features,” Computer Vision and Image Understanding (CVIU),
vol. 110, no. 3, pp. 346–359, 2008.

[10] J. Canny, “A computational approach to edge detection,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6,
pp. 679–698, 1986.

[11] M. Bihler and G. Kiefer, “Implementation of an Edge Detector Using a
Framework for Image Processing Tasks on FPGAs,” in Applied Research
Conference (ARC), July 2014, pp. 505–511.

[12] Paul V. C. Hough, “Method and means for recognizing complex pat-
terns,” Patent US000 003 069 654A, 1962.

[13] J. Illingworth and J. Kittler, “A survey of the Hough
transform,” Computer Vision, Graphics, and Image Processing,
vol. 44, no. 1, pp. 87–116, 1988. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0734189X88800331

[14] R. O. Duda and P. E. Hart, “Use of the Hough transformation
to detect lines and curves in pictures,” Communications of the
ACM, vol. 15, no. 1, pp. 11–15, 1972. [Online]. Available:
http://dl.acm.org/citation.cfm?id=361242

embedded world Conference 2015
www.embedded-world.eu


