
Using the ASTERICS Framework for Rapid
Prototyping and Education in Image Processing on

FPGAs
Philip Manke, Michael Schäferling, Gundolf Kiefer

University of Applied Sciences Augsburg
Efficient Embedded Systems Research Group

Augsburg, Germany
Email: {philip.manke, micheal.schaeferling, gundolf.kiefer}@hs-augsburg.de

Abstract—Considering the ongoing surge of interest in em-
bedded computer vision technology, a growing demand for
quickly and easily implemented systems exists. ASTERICS is
a framework for designing complex image processing systems on
FPGAs. Among others, the ASTERICS framework has already
been used to implement complete object recognition systems
based on the Generalized Hough Transform or SURF feature
detection, but also simpler systems for educational use.

This paper presents ASTERICS with a focus on its new
Python-based system generation tool. This tool allows image and
video processing systems to be defined easily by a short textual
description in Python syntax. Benefits considering the develop-
ment effort and time of this approach are described alongside a
design example demonstrating the development process.

Keywords—Computer Vision; Embedded Vision; Toolchains;
Image Processing; FPGA; Python; VHDL

I. INTRODUCTION

Image and video processing systems still require very
powerful processors to satisfy many of the modern use cases,
such as in autonomous vehicles, due to the large amounts
of data that need to be processed and, in many cases, to
satisfy real-time constraints. Since FPGAs are a better fit than
CPUs or GPUs for many of the common algorithms in the
area of image and video processing, many companies and
researchers are choosing FPGAs to implement these systems.
This choice comes with the drawback that the design process
for hardware description languages (HDL) as well as the
synthesis and verification processes are more time consuming
compared to software development. However, the increased
energy efficiency and speedup of the algorithms is often worth
the effort.

This paper introduces Automatics, a generator tool for
image processing systems using the ASTERICS framework.
The framework comprises a collection of interface standards,
processing modules and tools for image and video processing

on FPGAs. ASTERICS aims to simplify the development
of image processing systems for simple and complex image
processing tasks. Among others, it has previously been used to
implement object detection systems using the SURF algorithm
[15] or a generalized version of the Hough Transform [10,
22] and a positioning system using a Hough Transform for
curved lines and sophisticated lens distortion correction and
rectification [15, 16, 23]. ASTERICS offers a transparent
design process: All core components are open source [18], all
automatically generated source files aim to be human readable,
and the debugging process is supported through testbenches
and editable source files wherever possible. Automatics follows
the same principles, as it is extendable and written completely
in Python.

Section II reviews related work with respect to FPGA-based
computer vision frameworks. In Section III, the ASTERICS
framework and its background are presented in more detail.
Section IV summarizes two example systems previously im-
plemented using the ASTERICS framework. In Section V the
system generator Automatics is presented. Section VI details
the tool’s use for educational purposes. In Section VII first
experimental results in context of Automatics’ use for rapid
prototyping are presented. Section VIII concludes the paper
with a brief summary and planned future work.

II. RELATED WORK

Computer Vision tasks, including image and video process-
ing, require large amounts of data to be processed. Different
technologies are used to accelerate these types of workloads.
GPUs have been used for these tasks, as their hardware
architecture allows for many pixels to be processed in parallel.

Several approaches towards modular image processing ar-
chitectures on FPGAs can be found in literature. In [5] a
set of common architectures for video processing systems is
presented, to be used as templates to decrease development
time. [6] and [4] propose two architectures that provide

www.embedded-world.eu

the user with a shell of infrastructure to be expanded with
one or more custom modules, implementing the functionality
to be developed. In [7], the researchers focus on the user
input methodology, expanding the Khoros GUI [11], originally
meant for image processing development in software, with a
backend for HDL generation. A more modern example for this
approach is the tool Visual Applets by the company Silicon
Software [20].

To the best of our knowledge, the only published project
that comes close to our approach, in terms of the functionality
we strive to implement, is the HDL generator mentioned in
[21]. Sahlbach et al. sought to automate much of the process
of hardware development using software tools. The tools
presented include a HDL generator for connecting processing
modules and utilities for the verification of the generated
hardware.

The industry is also developing ASICs for general purpose
image and video processing. Google has developed the Pixel
Visual Core [8, 25], accelerating matrix multiplications using
weakly programmable processing elements. Renesas [19] has
developed a dynamically reprogrammable processor technol-
ogy, mainly for image and video processing [13, 14]. The
coprocessor contains multiple fixed size processing elements,
which can individually be reprogrammed fairly freely, though
not as versatile as FPGAs.

III. ASTERICS OVERVIEW

The Augsburg Sophisticated Toolbox for Embedded and
Realtime Image Crunching Systems (ASTERICS) framework
is an open toolbox for developing image and video processing
systems on FPGAs. The framework provides a number of
processing modules for common tasks, all sharing the same
open interfaces.

A major focus in the development of ASTERICS lies in its
modularity. According to [15] and [1], the individual image
processing steps of a computer vision system can be grouped
into four classes:

a) Pixel-based: Each result pixel requires only a single
input pixel, e.g. contrast operations, color space con-
versions

b) Window-based: Each result pixel is calculated from a
delimited area around the input pixel, e.g. edge filters

c) Semi-global: Each result value is dependent on a vari-
able section of the input image, e.g. feature descriptors

d) Global: Each result is based on information collected
from the entire input image, e.g. Hough-transform, de-
scriptor matching

ASTERICS supports all of these classes. Operations of the
classes a) and b) are generally best implemented as hardware
modules in FPGA logic. Such modules are provided as VHDL
source code using standard interfaces to communicate with
each other and with software.

For operations of class c) the best implementation depends
on the specific problem. On one hand, for example, the cal-
culation of SURF feature descriptors is an algorithm not very
well suited for the implementation in hardware. Therefore,

as shown in [15], an array of softcore processors may be
instantiated inside the system, with each processor calculating
a descriptor in parallel to the others. On the other hand,
for image rectification and undistortion, an implementation
entirely in hardware has proven itself as feasible and efficient,
as shown in [16].

Finally, operations of class d) are generally best imple-
mented in software. For example, the matching of SURF de-
scriptors is a task well suited for a general purpose processor,
as implemented in [15].

The ASTERICS framework contains a module library,
which is defined by the directory structure and contains VHDL
source files, software drivers and metadata. Three common
interfaces are defined to connect hardware modules with each
other and to facilitate communication with the software: A
streaming interface for pipeline architectures (as_stream),
a pixel window interface for filter modules and a register
interface for software communication. A software library ties
control of all modules together, also allowing for ASTERICS
to operate under Linux, using a kernel driver.

Software

Programmable Logic

CAMERA
OV7670

ASTERICS

User
Application

ASTERICS

Display

DRAM

Linux
Kernel Driver

(optional)

as_support
driver library

as_sensor
_ov7670

as_collect

Slave Registers

as_collect

as_stream_
_splitter

as_memwriter

myf i l ter

as_memwriter

Other
Interface

as_stream

AXI

AXI Lite

Figure 1. Representation of an example ASTERICS system including
hardware and software components.

Figure 1 shows an example ASTERICS system, as it can be
implemented on FPGA-SoC hardware. This example system
uses an OmniVision7670 camera as a video source and writes
two results into main memory, through the as_memwriter
modules: The original camera image through the right path
and a modified image, processed by some custom filter module
(myfilter), through the left path. From main memory, the
user application may directly use the results when running on
bare metal or access them through the Linux driver using the
as_support library.

IV. EXAMPLE SYSTEMS

ASTERICS has been used to implement multiple complex
systems. This section discusses two of these previously de-

www.embedded-world.eu

signed systems in more detail, to show the capability and
modularity of the ASTERICS framework.

A. Object Detection on a Chip using the SURF Algorithm

For the general task of object detection, an ASTERICS
system was implemented using point features, as presented
in [15]. To locate objects in a captured scene, first point
feature candidates need to be detected. For each candidate
a descriptor is calculated in the next step of the algorithm.
Finally, the descriptors are matched against a database of
feature descriptors, each associated to a known object. The
sophisticated SURF algorithm [3] was chosen as it provides
strong point feature candidates and descriptors. Unfortunately,
this algorithm is rather complex and demanding towards
computational power and memory bandwidth so that FPGA-
based hardware acceleration was necessary.

Figure 2. Steps of the SURF algorithm, assigned to image processing
operation classes.

Figure 2 details the individual processing steps and how
they are mapped to the four classes of operations introduced
in Section III.

Figure 3 shows the structure of the resulting image pro-
cessing system. A demonstrator application was built for this
system in terms of a mobile museum guide for the Augsburg
Puppet Theatre Museum ”die Kiste”. The object database was
built using just six still images in total of four museum exhibits
as test objects.

In terms of execution speed, the system is able to calculate
SURF descriptors at 18 FPS for a resolution of 640x480
pixels while operating at only 50 MHz, limited mainly by the

Figure 3. Hardware architecture of the ASTERICS system implementing a
SURF-based object detection museum guide.

descriptor calculation, as the determinant calculation is able
to run at up to 232 FPS. This makes the detector stage the
most efficient and customizable at the time of its publication
in [15].

B. Shape Recognition Using a Costumizable Hardware Imple-
mentation of the Generalized Hough Transform

Canny

Feature List

Object Recognition (B)

Image Processing (A)

Config

Preprocessing

Image (opt.)

Camera

Feature List

OutputUniversal Hough
Transform

Figure 4. Hardware architecture to perform the Generalized Hough Transform

To perform efficient shape recognition tasks, a series of
similar, customized image processing systems have been im-
plemented using ASTERICS, as presented in [10] and [22].
Figure 4 shows the general structure of these systems which
consist of various modules for image preprocessing, edge
detection and perform variants of the Hough transform [2, 9].

The Canny module implements a 2D Window Pipeline
which provides the edge features, weight and direction for
the following Hough transform. The Universal Hough
transform module can operate in General Hough Transform
(GHT) mode, for finding arbitrary shapes in images, and in
Line Hough Transform (LHT) mode, for finding straight lines.
The Universal Hough Transform (UHT) module is described
in detail in [22].

With this architecture, it is possible to perform a wide range
of different shape recognition tasks, including the following
examples:

• Groyne detection was performed in a GHT-based analysis
of aerial images very efficiently [10].

• Detection of parts at construction sites, such as locating
flanges of pipes, using GHT mode [22].

www.embedded-world.eu

• Traffic sign detection is an application which can be
efficiently performed using GHT mode (see Figure 5).

• In a race car application, cone detection is performed
using GHT mode (see Figure 6).

• Lane detection can be performed using the UHT module
in LHT mode (see Figure 7).

Figure 5. Examples for traffic sign detection (UHT in GHT mode) [10].

Figure 6. Example for cone detection in the race car (UHT in GHT mode)
[22].

(a) (b, c)

Figure 7. Examples for lane detection (UHT in LHT mode) [22].

All of these shape recognition systems have been im-
plemented on Xilinx Zynq XC7Z020 FPGA-SoCs, resulting
in very cost and energy efficient systems. In the driverless
race car of the University of Applied Sciences Augsburg,
the SoC runs Linux where a complex software stack with
additional OpenCV routines and a ROS (Robot Operating
System) interface controls the ASTERICS subsystem.

In all these systems, the Hough Transform requires just a
few milliseconds. For example, in the traffic sign recognition
system (Fig. 5), a single GHT run required on average 11.0 ms
for images with a resolution of 640x480 pixels with an average
of 24.1×103 edge points. This is faster than the used image
sensor modules which were operated at 30 frames per second.

V. DESIGNING ASTERICS SYSTEMS USING AUTOMATICS

The process of designing image and video processing sys-
tems is usually done using hardware description languages
(HDL) like VHDL or Verilog or using High Level Synthesis

tools. The ASTERICS system generator, Automatics, operates
on a higher abstraction level. A first version of Automatics is
introduced in brief in [12].

A. Automatics Script

Automatics uses a textual description of image processing
systems on a processing module level. This description is
written in Python syntax and consists mostly of single line
method calls. The system description script, we believe, is
simple enough to be understood and modified by users without
knowledge of any programming language, while users expe-
rienced in programming can leverage the possibilities offered
by the Python language.

Listing 1 shows a simple example of a system description
script. The described system uses a camera as a pixel source,
inverts all pixels, packages four pixels to 32 bit words using a
collector module and writes the results to main memory using
the as_memwriter module.

1 # Setup ASTERICS Automatics
2 import asterics
3 chain = asterics.new_chain()
4
5 # Add processing modules
6 camera = chain.add_module("as_sensor_ov7670")
7 inverter = chain.add_module("as_invert")
8 collect = chain.add_module("as_collect")
9 writer = chain.add_module("as_memwriter")

10
11 # Configure "as_memwriter" module
12 writer.set_generic_value("MEMORY_DATA_WIDTH", 32)
13 writer.set_generic_value("DIN_WIDTH", 32)
14
15 # Describe module connections
16 camera.connect(inverter)
17 inverter.connect(collect)
18 collect.connect(writer)
19
20 # Start generation process
21 chain.write_system("inverter_system")

Listing 1. Description script for a simple pixel inverter system

Lines 2 and 3 import the ASTERICS library including Auto-
matics and initialize the generation environment by creating a
chain object. In lines 6 to 9, the four processing modules are
added to the chain. The as_memwriter is then customized
by setting two configuration options in lines 12 and 13. Lines
16 to 18 connect the modules in the order described above.
Finally, in line 21, the chain.write_system method is
called, which starts the generation process.

Notice how the setup and management process of importing
the ASTERICS framework and starting the generation process
requires just three lines of Python code. If the default configu-
ration of a processing module is used, adding and connecting
a module is just one line each, while changing a configuration
value is one line for each value. Besides the methods shown in
Listing 1, Automatics provides further configuration methods
to allow the user to connect modules down to a port by port
basis and configure all generic values. A detailed account of

www.embedded-world.eu

functionalities of Automatics and ASTERICS in general can
be found in the ASTERICS Manual [24].

B. Automatics Output Products

Multiple methods are available to generate output products,
including write_system as used in Listing 1. In general,
Automatics generates system specific hardware and software
source files on a system-by-system basis. With each generation
process it copies or creates symbolic links to their respective
hardware and software driver source files for all processing
modules included in the system.

The following is a detailed list of available targets and their
output products:

• write_hw: Generate the hardware (VHDL) source files.
• write_sw: Generate the software driver source files.
• write_asterics_core: Generate all source files re-

quired to build the ASTERICS IP-Core.
• write_ip_core_xilinx: Generate all source files

and package the chain as an IP-Core for Xilinx Vivado.
To accomplish this, TCL scripts are generated. At the
time of writing, only the Xilinx toolchain is supported in
this way, others may follow in the future.

• vears: Copy or create a symbolic link to the VEARS IP-
Core. VEARS is an IP-Core for video output via HDMI,
DVI and VGA and part of the ASTERICS framework.

• write_system: Generate an ASTERICS IP-Core and
place it into an example system folder structure with the
VEARS IP-Core. This may be used as a starting point
for a new project with ASTERICS.

• write_system_graph: Generate a graphical repre-
sentation of the described system as a vector graphic.
Figure 10 shows an example.

• list_address_space: Print a list of addresses used
by ASTERICS processing modules to the terminal.

Among the VHDL source files, Automatics generates two
toplevel files used to define the interface of the ASTERICS IP-
Core and to connect the processing modules with each other.
The generated files aim to be human readable, with readable
code formatting and signal and port names reflecting their
origin in the generator script. Typically, a prefix is added to
the existing port names, signifying their origin and association
to a new entity.

Within the software driver, Automatics generates the main
C header file. The architecture of the software driver is shown
in Figure 8. The driver consists of the aforementioned header
file, asterics.h, invoking all individual drivers of the
systems various processing modules. Additionally, it contains
hardware-specific details, depending on the used processing
modules, such as their slave register addresses. The ASTERICS
Support Library implements the most basic functionalities re-
quired by ASTERICS. Depending on whether the Linux kernel
driver is included, it either accesses the processing modules
directly through register access or using kernel function calls.

Figure 10 shows an example of the graphical representations
of ASTERICS systems that Automatics can generate. The
figure shows the graph of the simple invert system described

Software Stack

FPGA-Vendor
Libraries

OS Libraries

ASTERICS Support Package (ASP)

User Application

uses

includes

includes includes

ASTERICS Support Library

ASTERICS Module Drivers

asterics.h

Figure 8. Software stack of ASTERICS drivers.

ASTERICS

CAMERA

OV7670

as_collect as_mem
-wr i te r

RAM

as_invertas_sensor_
_ov7670

Figure 9. Block graph of the pixel inverter system described by Listing 1.

in Listing 1, also shown as a block graph in Figure 9. This
functionality allows developers to quickly verify the Automa-
tics script. Besides only showing the user-added processing
modules, the graph output can be enriched by management
components added by Automatics, external inputs and outputs
and port names, useful for debugging or when working on
HDL level on an ASTERICS system.

C. Defining Custom Processing Modules

Besides the processing modules available with ASTERICS,
developers may also add their own processing modules. For
each execution of Automatics, all available modules are anal-
ysed and imported, using a short specification script written

www.embedded-world.eu

as_sensor_ov7670_0

as_invert_0

out
as_stream

as_collect_0

out
as_stream

as_memwriter_0

out
as_stream

Figure 10. Vector graphic graph representation of the pixel inverter system
generated by Automatics.

in Python. As an example, Listing 2 shows the specification
script for the module as_memwriter.

Essentially, the developer has to specify the following three
things:

• Line 7, 8: The main VHDL file of the module, which
defines its VHDL entity (toplevel file).

• Line 9-11: Other HDL files this module depends on.
• Line 12, 13: Other modules this module depends on.
In lines 16 and 17 the method discover_module is

called, starting the VHDL analysis of the toplevel file specified
for this module. In this step, all other metadata used later
by Automatics is generated automatically, mainly a list of all
VHDL ports of the module. From the list of ports interfaces
are inferred using a user-extendable list of interface templates.
The basis of this operation is the names of the VHDL ports,
which are split into a base name, prefixes and suffixes and the
port direction and data type.

1 # Import Automatics
2 from as_automatics_module import AsModule
3
4 # Module definition function
5 def get_module_instance(module_dir):
6 module = AsModule()
7 toplevel_file = \
8 "hardware/hdl/vhdl/as_memwriter.vhd"
9 module.files = \

10 [("hardware/hdl/vhdl/"
11 "as_mem_address_generator.vhd")]
12 module.dependencies = \
13 ["as_regmgr", "helpers", "fifo_fwft"]
14
15 # Run analysis and return the module object
16 module.discover_module(\
17 module_dir + "/" + toplevel_file)
18 return module

Listing 2. The module specification script of the as_memwriter module.

Figure 11. Demonstration of an augmented reality ASTERICS System.

VI. AUTOMATICS IN EDUCATION

ASTERICS in combination with Automatics is used actively
to convey concepts of hardware design and image processing
in bachelor courses at the University of Applied Sciences
Augsburg.

For example, ASTERICS is used in a system and logic
design course where, within three lab exercises of four hours
each, students build an augmented reality game ”Pong-on-a-
Chip”, similar to the system shown in Figure 11. The system
includes an ASTERICS chain to generate edges from the
camera image, at which the virtual pong ball is reflected.

The lab project is implemented using a Zybo board with
a Xilinx Zynq-7010 SoC device [17]. The system comprises
an ASTERICS chain which the students extend with their
own module for edge detection. The students write their own
software to animate the ball and let it change direction based
on the edge data delivered by the edge detection module.
For this, the VEARS visualization module and its graphics
library, which is also part of the ASTERICS framework, is
used, running on the ARM processor of the SoC.

Within this course the students learn:
• How to create SoC designs using the Xilinx Vivado

toolchain.
• How to do and practice hardware- software co-design,

implementation and debugging techniques using SoCs.
• The basics of hardware accelerated image processing.
• How to integrate custom hardware into a larger project.
• How to use and reuse existing hardware and software

components.
Throughout the course, Automatics helps to hide some of the

organizational tasks that would have to be done to configure
and build the ASTERICS IP-Core, enhancing the learning
experience and making the ASTERICS framework a more
valuable tool for education.

www.embedded-world.eu

VII. EXPERIMENTAL RESULTS

For a tool to be useful to build prototypes of systems, it must
have a short enough runtime, where acceptable runtimes vary
from application to application. Synthesis tools for FPGAs and
ASICs have rather long execution times, increasing with the
complexity and size of the project, but generally range from
a few minutes to one or more hours.

The execution times of Automatics and the Xilinx Vivado
toolchain (version 2017.2) have been measured and are shown
in Table I. All runtime measurements are made on the same
hardware platform: A notebook running an Intel Core i7-
5500U mobile dual-core processor with SMT and all data
stored on an SSD. The test project includes the ASTERICS
system shown in Figure 1 and a VEARS IP-Core. The
myfilter module used for this systems contains a pipelined
7x7 box filter. Furthermore, the system comprises two AXI
management IP-Cores, an AXI IIC master and three AXI
GPIO IP-Cores. The hardware target is the low-end Zybo
development board integrating a XC7Z010 FPGA-SoC. The
entire system uses 42% of all available slice LUTs, 22% of
all slice registers and 2.5% of embedded RAM (Block RAM).

Table I shows average runtimes for the various synthesis and
compilation steps. The entire build process is run in a terminal,
without opening the Vivado GUI. The software project setup
is done using the Xilinx Hardware Software Interface (HSI)
tool in terminal mode. The Board Support Package for the
hardware target and a minimal bare-metal user application are
compiled for the project using an ARM GCC cross compiler
of version 4.9.3.

Table I
RUNTIME MEASUREMENTS BUILDING THE ”MYFILTER” SYSTEM.

Tool Build Step Runtime [s]
Automatics Generate ASTERICS output products 0.18
Vivado ASTERICS IP-Core Packaging 10.8
Vivado Build Block Design 19.3
Vivado Synthesize IP-Cores & System 461
Vivado Implementation 130
HSI & GCC Setup and compile Software Project 15.7

The results show that even for a small FPGA design the
runtime of Automatics is negligible compared to the execution
times of the rest of the toolchain. Therefore, Automatics is
well suited to accelerate the design and development process.

Furthermore, Automatics is able to verify some configura-
tion options of processing modules in the image processing
system. Specifically, options that pertain to data vector widths
of processing modules, can be verified and mismatches are
reported. In cases where the solution to the mismatch is
unambiguous, Automatics can automatically apply a fix. In all
other cases, the process is stopped before the output products
are generated and all encountered errors are reported. Catching
these errors early on, instead of in the middle of a lengthy
synthesis run, can greatly reduce the time spent debugging
the hardware design and further speed up development.

VIII. CONCLUSION AND FUTURE WORK

ASTERICS is a framework for image processing on FPGAs,
introduced in concept and practice. The new system generator
Automatics enables developers to describe image processing
systems on a higher abstraction level via a concise textual
input method using Python syntax. The input method is simple
enough to allow rapid prototyping of new systems with little
effort. This has enabled the ASTERICS framework to be used
for interactive teaching on image and video processing on
FPGAs and embedded systems. Developers are able to use new
custom modules with the generator by adding a Python script
to the hardware description, providing only some basic pieces
of metadata. Automatics has a very short runtime and allows
developers to catch certain errors in the hardware configuration
early in the development process, thus contributing to a more
rapid development cycle.

Ongoing and future work concentrates on extending Auto-
matics towards window filter modules and support for artifical
neural networks. The range of build targets available in Auto-
matics is planned to be expanded by support for Intel FPGAs
and an optional Linux driver. Likewise, the ASTERICS frame-
work is continuously expanded by support for more FPGA
and FPGA-SoC platforms and additional image processing
modules, as well as more example and reference systems.

ACKNOWLEDGMENT

Part of this work has been supported by the German Federal
Ministry for Economic Affairs and Energy, grant number
ZF4102001KM5.

REFERENCES

[1] D. G. Bailey, C. T. Johnston, and K. T. Gribbon. “Imple-
menting Image Processing Algorithms on FPGAs”. In:
Proceedings of the Eleventh Electronics New Zealand
Conference. Citeseer, 2004, pp. 118–123.

[2] D. H. Ballard. “Generalizing the Hough Transform to
Detect Arbitrary Shapes”. In: Readings in Computer
Vision: Issues, Problems, Principles, and Paradigms.
San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1987, pp. 714–725. ISBN: 0934613338.

[3] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool. “SURF:
Speeded Up Robust Features”. In: Computer Vision and
Image Understanding (CVIU) 110.3 (2008), pp. 346–
359.

[4] C. Desmouliers, E. Oruklu, and J. Saniie. “FPGA-
based design of a high-performance and modular video
processing platform”. In: 2009 IEEE International
Conference on Electro/Information Technology (2009),
pp. 393–398. ISSN: 2154-0357. DOI: 10.1109/EIT.2009.
5189649.

[5] N. Faroughi. “An image processing hardware design
environment”. In: Proceedings of 40th Midwest Sym-
posium on Circuits and Systems. Dedicated to the
Memory of Professor Mac Van Valkenburg. Vol. 2. 1997,
pp. 1225–1228. DOI: 10.1109/MWSCAS.1997.662301.

www.embedded-world.eu

[6] E. Gudis, P. Lu, D. Berends, et al. “An Embedded
Vision Services Framework for Heterogeneous Acceler-
ators”. In: 2013 IEEE Conference on Computer Vision
and Pattern Recognition Workshops (2013), pp. 598–
603. ISSN: 2160-7516. DOI: 10.1109/CVPRW.2013.90.

[7] J. Hammes, B. Rinker, W. Bohm, et al. “Cameron: high
level language compilation for reconfigurable systems”.
In: 1999 International Conference on Parallel Architec-
tures and Compilation Techniques (Cat. No.PR00425).
1999, pp. 236–244. DOI: 10.1109/PACT.1999.807557.

[8] J. L. Hennessy and D. A. Patterson. Computer Archi-
tecture, Sixth Edition: A Quantitative Approach. 6th.
San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2017. Chap. 7, pp. 540–544, 557–606. ISBN:
0128119055, 9780128119051.

[9] P. V. C. Hough. “Method and means for recognizing
complex patterns”. U.S. pat. 3069654A. Dec. 1962.

[10] G. Kiefer, M. Vahl, J. Sarcher, and M. Schaeferling.
“A configurable architecture for the generalized hough
transform applied to the analysis of huge aerial images
and to traffic sign detection”. In: 2016 International
Conference on ReConFigurable Computing and FPGAs
(ReConFig). 2016, pp. 1–7. DOI: 10.1109/ReConFig.
2016.7857143.

[11] K. Konstantinides and J. R. Rasure. “The Khoros soft-
ware development environment for image and signal
processing”. In: IEEE Transactions on Image Process-
ing 3.3 (1994), pp. 243–252. ISSN: 1057-7149. DOI:
10.1109/83.287018.

[12] P. Manke and G. Kiefer. “Software Tool for the Au-
tomated Generation of Image Processing Systems for
FPGAs Using the ASTERICS Framework”. In: Applied
Research Conference 2019. 2019. ISBN: 978-3-96409-
182-6.

[13] M. Motomura. “A Dynamically Reconfigurable Proces-
sor Architecture”. In: Proc. 2002 Microprocessor Forum
(2002), pp. 2–4.

[14] M. Motomura. “STP Engine, a C-based Programmable
HW Core featuring Massively Parallel and Reconfig-
urable PE Array: Its Architecture, Tool, and System Im-
plications”. In: Proc. Cool Chips XII (2009), pp. 395–
408.

[15] M. Pohl, M. Schaeferling, and G. Kiefer. “An efficient
FPGA-based hardware framework for natural feature
extraction and related Computer Vision tasks”. In: 2014
24th International Conference on Field Programmable
Logic and Applications (FPL). 2014, pp. 1–8. DOI: 10.
1109/FPL.2014.6927463.

[16] M. Pohl, M. Schaeferling, G. Kiefer, et al. “An efficient
and scalable architecture for real-time distortion re-
moval and rectification of live camera images”. In: 2012
International Conference on Reconfigurable Computing
and FPGAs (2012), pp. 1–7. ISSN: 2325-6532. DOI:
10.1109/ReConFig.2012.6416730.

[17] Digilent Inc. Zybo Development Board Reference. Dec.
2019. URL: https://reference.digilentinc.com/reference/
programmable-logic/zybo/start.

[18] EES research group. Efficient Embedded Systems Home-
page for ASTERICS. Dec. 2019. URL: https://ees.hs-
augsburg.de/asterics.

[19] Renesas Electronics Corporation. Renesas Homepage.
Dec. 2019. URL: https://www.renesas.com.

[20] Silicon Software GmbH. Silicon Software Homepage.
Dec. 2019. URL: https://silicon.software.

[21] H. Sahlbach, D. Thiele, and R. Ernst. “A system-
level FPGA design methodology for video applications
with weakly-programmable hardware components”. In:
Journal of Real-Time Image Processing 13.2 (2017),
pp. 291–309. ISSN: 1861-8219. DOI: 10.1007/s11554-
014-0403-4. URL: https://doi.org/10.1007/s11554-014-
0403-4.

[22] J. Sarcher, C. Scheglmann, A. Zoellner, et al. “A
Configurable Framework for Hough-Transform-Based
Embedded Object Recognition Systems”. In: 2018 IEEE
29th International Conference on Application-specific
Systems, Architectures and Processors (ASAP). 2018,
pp. 1–8. DOI: 10.1109/ASAP.2018.8445086.

[23] M. Schaeferling, M. Bihler, M. Pohl, and G. Kiefer.
“ASTERICS - An Open Toolbox for Sophisticated
FPGA-Based Image Processing”. In: embedded world
Conference 2015 - Proceedings. 2015.

[24] M. Schaeferling, J. Sarcher, A. Zoellner, P. Manke, and
G. Kiefer. The ASTERICS Book. 2019. URL: https://ees.
hs-augsburg.de/asterics.

[25] Wikipedia. Pixel Visual Core. Dec. 2019. URL: https:
//en.wikipedia.org/wiki/Pixel Visual Core.

www.embedded-world.eu

