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1. Introduction

The goal of the ParaNut project is to develop an open, scalable and practically applicable
multi-core processor architecture for embedded systems. Scalability is given by supporting
parallelism at thread and data level based on multiple processing cores while keeping the
design of the individual core itself as simple as possible.
ParaNut introduces a unique concept for SIMD (single instruction, multiple data) vec-

torization. Whereas SIMD extensions for workstation processors or embedded systems
frequently contain specialized instructions leading to an inherently bad compiler support,
SIMD code for the ParaNut can be programmed in a high-level language according to a
paradigm very similar to thread programming.
The instruction set is kept compatible to the RISC-V speci�cation. Hence, the RISC-V

GCC tool chain and libraries/operation systems (newlib, Linux in the future with some
necessary extensions) can be used with the ParaNut .
To date, the ParaNut project is still work in progress, and new contributors from in-

dustry and academia are welcome. An informal project overview including the implemen-
tation status and very promising benchmark results can be found in [1].
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2. The ParaNut Architecture

2.1. Instruction Set Architecture

The ParaNut instruction set architecture is compatible with the RISC-V speci�cation.
The RISC-V architecture is an open source load and store RISC architecture designed
with the purpose to support a wide spectrum of di�erent chips from small microcontrollers
to server CPUs. [2]. Scalability is achieved by de�ning a minimalistic basic instruction
set (RV32I) together with optional extensions including a �oating-point unit (FPU) or a
memory management unit (MMU). Furthermore, the basic architecture o�ers con�gura-
tion options such as di�erent register �le sizes or optional arithmetic instructions.
ParaNut processors implement all mandatory instructions according to the RV32I spec-

i�cation. Features unique to ParaNut require some additional ParaNut -speci�c instruc-
tions. These will be encapsulated in a small support library, so that they are still usable
without compiler modi�cations. For software development, the GCC tool chain from the
RISC-V project can be used without any modi�cations. A cycle-accurate SystemC model
can be used as an instructions set simulator. To date, an operating environment based
on the "newlib" C library allows to compile and run software both in the simulator and
on real hardware.

2.2. Structural Organisation

The general structure of ParaNut is depicted in Figure 2.1. The core contains one Central
Processing Unit (CePU) and a number of Co-Processing Units (CoPU). The CePU is a
full-featured CPU, whereas the CoPUs are CPUs with a more or less reduced functionality
and complexity. Depending on the mode of execution (see below), the CoPUs may either
be inactive (sequential code), execute a part of a vector operation, or execute a thread.
In the sequel, the term CPU refers to any of a CePU or a CoPU.
All the CPUs are connected to a central Memory Unit (MemU). The MemU contains

the cache(s) and means to support synchronisation primitives. It provides a single bus
interface to the main system bus, and independent read and write ports for each CPU. It
is optimized to support parallel accesses by di�erent CPUs. In particular, multiple read
accesses to the same address can be served in parallel and run no slower than a single
access, and accesses to neighboring addresses can mostly be served in parallel. These two
properties are particularly important for the SIMD-like mode.
Each CPU contains an ALU, a register �le and some control logic which together form

the Execution Unit (ExU). The Instruction Fetch Unit (IFU) is responsible for fetching
instructions from the memory subsystem and contains a small bu�er for prefetching in-
structions. The Load-Store Unit (LSU) is responsible for performing the data memory
accesses of load and store operations. It contains a small store bu�er and implements write
combining and store forwarding mechanisms as well as mechanisms to support atomic op-
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CHAPTER 2. THE PARANUT ARCHITECTURE

Figure 2.1.: A ParaNut instance with 4 cores

erations.
The Execution Unit is designed and optimized for a best-case throughput of one in-

struction in two clock cycles (CPI≈2, CPI = "clocks per instruction"). This is slower than
modern pipeline designs targeting a best-case CPI value of 1. However, it allows to better
optimize the execution unit for area, since no pipeline registers or extra components for
the detection and resolution of pipeline con�icts are required. Furthermore, in a multi-
core system, the performance is likely to be limited by bus and memory contention e�ects
anyway, so that an average CPI value of 1 is expected to be hardly achievable in practice.
In the ParaNut design, several measures help to maintain an average-case throughput
very close to the best-case value of CPI≈2, even for multi-core implementations.
The design of the memory interface and cache organization is very critical for the scala-

bility of many-core systems. In a ParaNut system, the Memory Unit (MemU) contains the
cache, the system bus interface, and a multitude of read and write ports for the processor
cores. Each core is connected to the MemU by two independent read ports for instructions
and data and one write port for data. The cache memory logically operates as a shared
cache for all cores and is organized in independent banks with switchable paths from each
bank to each read and write port. Tag data is replicated to allow arbitrary concurrent
lookups. Parallel cache data accesses by di�erent ports can be performed concurrently if
their addresses a) map to di�erent banks or b) map to the same memory word in the same
bank. Furthermore, by using dual-ported Block-RAM cells, each bank can be equipped
with two ports, so that up to two con�icting accesses (i.e. same bank, di�erent addresses)
are possible in parallel. Hence, even for many cores, the likelihood of contention can be
arbitrarily reduced by increasing the number of banks, which is con�gurable at synthesis
time.
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CHAPTER 2. THE PARANUT ARCHITECTURE

The cache can be con�gured to be 1/2/4-way set associative with con�gurable replace-
ment strategies (e.g. pseudo-random or least-recently used). The Memory Unit imple-
ments mechanisms for uncached memory accesses (e.g. for I/O ports) and support for
atomic operations. All transactions to and from the system bus are handled by a bus
interface unit, which presently supports the Wishbone bus standard, but can easily be
replaced to support other busses such as AXI.

2.3. Execution Modes and Capabilities

A CPU in the ParaNut architecture can run in 4 di�erent modes:

Mode 0 (Halted): The CPU is inactive.

Mode 1 (Linked): The CPU does not fetch instructions, but executes the instruction
stream fetched by the CPU.

Mode 2 (Unlinked): The CPU fetches and executes its own instructions. Exceptions trig-
ger an exception of the controlling CePU and put this CPU into Mode 0.
The CePU can later put this CPU into Mode 2 again, and the code execution
continues as if the exception has been handled by this CPU.

Mode 3 (Autonomous): The CPU executes its own instructions. Exceptions and inter-
rupts can be handled by this CPU.

Typically, the CePU always runs in Mode 3. The mode of the CoPUs is controlled by
the CePU. Depending on the application, the CoPUs can be customized that they only
support a subset of the 4 modes. For example, if only SIMD vectorization and no multi-
threading is required, all the logic required for modes 2 and 3 can be stripped o�. Now,
the CoPU does not require much more area than a vector slice of a normal SIMD unit
would. In general, a CoPU is customized for a capability level of m, meaning that all
modes ≤ m are supported.

• A Capability-1-CoPU only contains very little logic besides the ALU and the register
�le. Hence, a ParaNut with only Capability-1-CoPUs does not require much more
area than a normal SIMD processor.

• A Capability-2-CoPU additionally contains an instruction fetch unit and eventually
one more read port to the Memory Unit (MemU) for it.

• A Capability-3-CoPU is basically a full-featured CePU. It contains logic to handle
interrupts and exceptions and has its own set of special registers. This is not needed
for multi-threading, but for multi-processing, where each CoPU is managed by the
operating system as an individual CPU.

A CPU with Capability ≥2 in Mode 0 will reset its IFU. Upon changing to Mode 2 or
higher the CPU starts executing at the reset vector address. This enables control of
Mode 2 CoPUs through software. Figure 2.2 illustrates the active/required hardware for
the 4 modes. The following sections brie�y illustrate how SIMD vectorization or multi-
threading can be performed. Further informal explanations and examples can be found
in [1].
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CHAPTER 2. THE PARANUT ARCHITECTURE

Figure 2.2.: ParaNut modes and required logic

2.4. SIMD Vectorization

In Mode 1, the CoPU performs exactly the same instructions as the CePU. This is the
SIMD mode. All registers of the CePU can be regarded as a slice of a big vector register.
Since all CPUs perform the same operation at a time, the memory bandwidth required for
instruction fetching is reduced considerably and equivalent to the bandwith of a single-core
processor.
From a software perspective, the code on a CoPU executes almost normally, just like

multi-threaded code. There is only a single, well-de�ned exception: Conditional branches
and jump instructions with variable target addresses are executed based on target address
determined by the CePU. In the C language, such critical instructions can be generated out
of �if� statements, �case� statements and loop constructs. As long as the conditions always
evaluate equally on all CPUs, SIMD code can be easily written using a standard compiler
and a thread-like programming model. Figure 2.3 shows an example of a vectorized
loop. The macros 'pn_begin_linked' and 'pn_end_linked' open and close a parallel code
section, respectively. Since the body of the �for� loop does not contain any conditional
branches and the loop end condition �n < 100� always evaluates equally on all CPUs, this
code is executable on an SIMD-based processor variant.

2.5. Multi-Threading

To perform simultaneous multi-threading, the CoPUs are put into Mode 2. In this mode,
all exceptions and interrupts are handled by the CePU. This is somewhat a limitation
compared to Mode 3, in which the CPUs operate more autonomously. However, Mode 2
is su�cient for all typical applications, in which multi-threading is used as an acceleration
measure.
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CHAPTER 2. THE PARANUT ARCHITECTURE

1 int a [100], b [100], s [100];
2

3 void add_arrays_sequential () {
4 for (n = 0; n < 100; n += 1)
5 s [n] = a[n] + b[n];
6 }
7

8 void add_arrays_parallel () {
9 int n, cpu_no;

10

11 // Activate 3 (=4−1) CoPUs in the "Linked" state and
12 pn_begin_linked (4);
13

14 // get the number of this CPU...
15 cpu_no = pn_get_cpu_no();
16

17 // performs 4 additions in parallel
18 for (n = 0; n < 100; n += 4)
19 s [n + cpu_no] = a[n + cpu_no] + b[n + cpu_no];
20

21 // End linked mode, deactivate the CoPUs...
22 pn_end_linked ();
23 }

Figure 2.3.: Example of a vectorized loop
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3. Instruction Set Reference

This chapter contains the instruction set reference for the ParaNut achitecture.

3.1. Privilege Levels

The ParaNut supports several combinations of privilege levels as speci�ed in the RISC-V
manual [3], which can be set in the global con�guration setting CFG_PRIV_LEVELS. The
currently supported combinations are listed in Table 3.1 and can be con�gured by setting
the desired number of levels.

Number of levels Supported Modes Intended Usage
1 M Simple embedded systems
2 M, U Secure embedded systems
3 M, S, U Systems running Unix-like operating systems

Table 3.1.: Supported combinations of privilege modes. [3]

Note that the N-Extension, enabling User-mode exception and interrupt handling is cur-
rently not supported. Furthermore, no Memory Management Unit MMU is implemented
at this time, thus no virtual address translation is possible in any mode.
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CHAPTER 3. INSTRUCTION SET REFERENCE

3.2. Instructions

The ParaNut implements the RV32I base instruction set. It may be con�gured to addi-
tionally include the M and A extensions. For a full list of the corresponding instructions
please refer to the RISC-V Instruction Set Manual Volume I [2]. This chapter contains
additional implementation speci�c information on some instructions.

3.2.1. Conditional Branches

Currently no branch prediction is featured, branches as well as jumps stall the instruction
fetch until the condition and/or address is evaluated.

3.2.2. Load and Store Instructions

A ParaNut raises the appropriate address misaligned exception on misaligned loads and
stores. The trap is taken according to speci�cation and the failing address is saved inmtval
for further handling. Misaligned stores do not cause any changes in memory. Misaligned
loads do not change the value of rd.

3.2.3. Memory Ordering Instructions

The ParaNut processor operates inorder and the write bu�er of the Load Store Units is
emptied inorder so the FENCE instruction is currently implemented as a LSU �ush and
the IFU bu�er is also cleared.
For synchronization between a ParaNut processor and other hardware in the system

the special cache control instructions described in Section 3.2.4 can be used.

3.2.4. Control and Status Register Instructions

SYSTEM instructions are used to access system functionality that might require privileged
access and are encoded using the I-type instruction format. These can be divided into
two main classes: those that atomically read-modify-write control and status registers
(CSRs), and all other potentially privileged instructions.

3.2.5. Trap-Return Instructions

Information about these instructions can be found in the RISC-V Privileged Architecture
Instruction Set Manual [3]

ParaNut does not implement the N-Extension, meaning URET is not supported.
SRET is only available if S-mode is enabled.
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CHAPTER 3. INSTRUCTION SET REFERENCE

3.2.6. ParaNut Instructions

The ParaNut architecture uses the custom-0 (0x0B) major opcode for its custom instruc-
tions as suggested in the RISC-V ISA manual [2].

31 20 19 15 14 12 11 7 6 0

funct12 rs1 funct3 rd opcode
12 5 3 5 7
0 0 HALT 0 CUSTOM-0

o�set[11:0] base CINV 0 CUSTOM-0
o�set[11:0] base CWB 0 CUSTOM-0
o�set[11:0] base CFLUSH 0 CUSTOM-0

0 0 CINVA 0 CUSTOM-0
0 0 CWBA 0 CUSTOM-0
0 0 CFLUSHA 0 CUSTOM-0

The HALT instruction halts the current CPU by switching to Mode 0. If executed on
the CePU it also halts all other CPUs in the system. Note that halting a mode 2 capable
CPU will cause the reset of its program counter to the reset address.

The CINV, CWB and CFLUSH instructions control the MemU cache. All of these
operate on the e�ective address obtained by adding register rs1 to the sign extended
12-bit o�set. CINV just invalidates the cache line containing the e�ective address, while
CWB triggers a write back of the cache line to main memory. CFLUSH is the combination
of CWB and CINV. Similarly the CINVA, CWBA and CFLUSHA serve the same function
but execute it on the whole cache.

The CINV(A), CWB(A) and CFLUSH(A) instructions are also bu�ered in the LSU
write bu�er and are non blocking. They can take an arbitrary amount of time to
complete. If you need the instruction to complete before continuing the execution
follow it with a �fence� instruction to ensure the cache operation is fully executed.
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CHAPTER 3. INSTRUCTION SET REFERENCE

3.3. Control and Status Registers (CSR)

This section describes the Control and Status Registers (CSRs), which are either standard
machine or supervisor CSRs, or speci�c to the ParaNut architecture. The addresses used
are de�ned in the RISC-V Privileged Architecture Instruction Set Manual [3]. All registers
are 32 bits wide. Registers mentioned in Tables 3.4, 3.8, and 3.9 are readable only by the
CePU.
The descriptions, tables and �gures in Sections 3.3.1, 3.3.2 and 3.3.3 are derived from

the RISC-V privileged ISA [3]. Clari�cations or deviations from the speci�cation are
added as comments.

3.3.1. Terminology and Conventions for CSR Field Speci�cations

Tables 3.2 and 3.3 list abbreviations frequently used in this chapter. A more detailed
description of the abbreviations may be found in Chapter 2.3 of the RISC-V Privileged
Architecture Instruction Set Manual [3]. Tables 3.4, 3.8, and 3.9 contain information
about the available CSRs and their access restrictions.

Abbreviation Description
WIRI Reserved Writes Ignored, Reads Ignore Values
WPRI Reserved Writes Preserve Values, Reads Ignore Values
WLRL Write/Read Only Legal Values
WARL Write Any Values, Reads Legal Values

Table 3.2.: Write mode abbreviations

Privilege Description
MRW Machine Mode Readable/Writeable
MRO Machine Mode Read-Only
URW User Mode Readable/Writeable
URO User Mode Read-Only
SRW Supervisor Mode Readable/Writeable
SRO Supervisor Mode Read-Only

Table 3.3.: Privilege abbriviations

3.3.2. Machine-Level Control and Status Registers

Table 3.4 lists all Control and Status Registers (CSR) implemented by the
ParaNut architecture. Unless mentioned otherwise, they are implemented according to
the RISC-V speci�cation [3]. The following subsections describe the implementation-
speci�c details as they are implemented on a ParaNut . Note, that all registers listed in
this section are solely available on the CePU. Trying to access them from a CoPU raises
an Illegal Instruction exception.
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CHAPTER 3. INSTRUCTION SET REFERENCE

Number Privilege Name Description
Machine Information Registers

0xF11 MRO mvendorid Vendor ID.
0xF12 MRO marchid Architecture ID.
0xF13 MRO mimpid Implementation ID.
0xF14 MRO mhartid Hardware thread ID.

Machine Trap Setup
0x300 MRW mstatus Machine status register.
0x301 MRO misa ISA and extensions
0x302 MRW medeleg Machine exception delegation register.
0x303 MRW mideleg Machine interrupt delegation register.
0x304 MRW mie Machine interrupt-enable register.
0x305 MRW mtvec Machine trap-handler base address.

Machine Trap Handling
0x340 MRW mscratch Scratch register for machine trap handlers.
0x341 MRW mepc Machine exception program counter.
0x342 MRW mcause Machine trap cause.
0x343 MRW mtval Machine bad address or instruction.
0x344 MRW mip Machine interrupt pending.

Machine Counter/Timers
0xB00 MRW mcycle Machine cycle counter.
0xB02 MRW minstret Machine instructions-retired counter.
0xB03 MRW mhpmcounter3 Machine performance-monitoring counter.
0xB04 MRW mhpmcounter4 Machine performance-monitoring counter.

...
0xB1F MRW mhpmcounter31 Machine performance-monitoring counter.
0xB80 MRW mcycleh Upper 32 bits of mcycle, RV32I only.
0xB82 MRW minstreth Upper 32 bits of minstret, RV32I only.
0xB83 MRW mhpmcounter3h Upper 32 bits of mhpmcounter3, RV32I only.
0xB84 MRW mhpmcounter4h Upper 32 bits of mhpmcounter4, RV32I only.

...
0xB9F MRW mhpmcounter31h Upper 32 bits of mhpmcounter31, RV32I only.

Machine Counter Setup
0x323 MRW mhpmevent3 Machine performance-monitoring event selector.
0x324 MRW mhpmevent4 Machine performance-monitoring event selector.

...
0x33F MRW mhpmevent31 Machine performance-monitoring event selector.

Machine Timer Registers
0xF01 MRW mtime Machine timer register.
0xF02 MRW mtimeh Upper 32 bits of mtime
0xF03 MRW mtimecmp Machine timer compare register.
0xF04 MRW mtimecmph Upper 32 bits of mtimecmp

Table 3.4.: Currently de�ned standard RISC-V CSRs
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CHAPTER 3. INSTRUCTION SET REFERENCE

3.3.2.1. Machine Vendor ID Register (mvendorid)

Returns a �xed value of 0 indicating a non-commercial implementation as de�ned in [3].

MXLEN-1 0

0 (Fixed)
MXLEN

Figure 3.1.: Vendor ID register (mvendorid).

3.3.2.2. Machine Architecture ID Register (marchid)

Returns a �xed value of 0, since the Architecture ID is not yet requested from the RISC-V
Foundation.

MXLEN-1 0

0 (Fixed)
MXLEN

Figure 3.2.: Machine Architecture ID register (marchid).

3.3.2.3. Machine Implementation ID Register (mimpid)

This register provides detailed Information about the ParaNut hardware revision as shown
in Figure 3.3. The ParaNut versioning scheme follows the very common Major, Minor,
Revision scheme. Additionally bit 0 represents a dirty �ag, indicating if the hardware has
been modi�ed.

31 24 23 16 15 1 0

Major Minor Revision Dirty
8 8 15 1

Figure 3.3.: Machine Implementation ID register (mimpid).

3.3.2.4. Hart ID Register (mhartid)

The mhartid CSR is an MXLEN-bit read-only register containing the integer ID of the
hardware thread running the code. The RISC-V speci�cation de�nes a hart as a single
hardware thread. In the current ParaNut implementation, multiple hardware threads on a
single core are not supported. Therefore, the Hart ID Register is equivalent to pncoreid.
mhartid can only be accessed by the CePU, which means it always returns zero.

MXLEN-1 0

Hart ID
MXLEN

Figure 3.4.: Hart ID register (mhartid).
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3.3.2.5. Machine Status Register (mstatus)

Implements the �ags listed in Figure 3.5, which represent only a subset of mstatus in [3].
WPRI indicates that the bits are not yet implemented and should be preserved on writes
for forward compatibility reasons, as indicated in Table 3.2

MXLEN-1 9 8 7 6 5 4 3 2 1 0

WPRI SPP MPIE WPRI SPIE WPRI MIE WPRI SIE WPRI

23 1 1 1 1 1 1 1 1 1

Figure 3.5.: Machine-mode status register (mstatus) for RV32.

3.3.2.6. Machine ISA Register (misa)

The misa CSR is a WARL read-only register reporting the ISA supported by the hart.
As the ParaNut is highly con�gurable, the Extensions �led may or may not report some
extensions. Table 3.5 shows the possibilities of con�guration. MXL is �xed to 1 to indicate
32-bit support.

MXLEN-1 MXLEN-2 MXLEN-3 26 25 0

MXL[1:0] (WARL) WIRI Extensions[25:0] (WARL)
2 MXLEN-28 26

Figure 3.6.: Machine ISA register (misa).

Bit Character Fixed/Con�guration Description
0 A CFG_EXU_A_EXTENSION=1 Atomic extension
8 I Fixed to 1 RV32I/64I/128I base ISA
12 M CFG_EXU_M_EXTENSION=1 Integer Multiply/Divide extension
18 S CFG_PRIV_LEVELS=3 Supervisor mode implemented
20 U CFG_PRIV_LEVELS≥2 User mode implemented
23 X Fixed to 1 ParaNut extensions present

Table 3.5.: Encoding of Extensions �eld in misa.

3.3.2.7. Machine Interrupt Registers (mip and mie)

These registers are read-write registers, but currently without any functionality. In later
revisions they might be reworked.

3.3.2.8. Machine Trap Vector Base Address Register (mtvec)

Currently, the lowest two bits are �xed to zero, which indicates that all traps set the
program counter to BASE+4.
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MXLEN-1 2 1 0

BASE[MXLEN-1:2] (WARL) Fixed to 0 (WARL)
MXLEN-2 2

Figure 3.7.: Supervisor trap vector base address register (stvec).

3.3.2.9. Machine Trap Delegation Registers (medeleg and mideleg)

These registers are only available if the con�guration parameter CFG_PRIV_LEVELS is set
to 3, meaning supervisor mode is enabled.

3.3.2.10. Machine Cause Register (mcause)

After a trap occured, mcause contains one of the �ags listed in Table 3.6. Note that
environment calls may only occur if the corresponding mode is con�gured.

MXLEN-1 MXLEN-2 0

Interrupt Exception Code (WLRL)
1 MXLEN-1

Figure 3.8.: Machine Cause register mcause.

3.3.2.11. Hardware Performance Monitor

The hardware performance monitor counters can be con�gured in the ParaNut at compile
or synthesis time through the con�guration �le. They can be fully disabled for minimal
space requirements. Reads will then return a �xed value of zero.

When the performance counters are enabled, mcycle/h has a width of 64 bit, but the
width of all the other performance counters can be con�gured to be between 33 and 64
bit. Also the amount of performance registers can be changed from 8 to 32. A minimum
of 8 is required because the �rst 6 are reserved for the events speci�ed in Table 3.7.
These registers will also be set to zero on reset and won't read an arbitrary value. Since
the events for the counters are implementation speci�c the mhpmevent3-mphmevent31

registers have a �xed value of zero.

3.3.2.12. Machine Timer Registers (mtime and mtimecmp)

The ParaNut currently doesn't implement any timers, hence mtime/h and mtimecmp/h

read �xed values of zero and are implemented as WARL on writes. In a future implemen-
tation, they will be implemented according to [3].

63 0

0 (WARL )

64

Figure 3.9.: Machine time register (memory-mapped control register).
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Interrupt Exception Code Description
1 0 Not implemented
1 1 Not implemented
1 2 Not implemented
1 3 Not implemented
1 4 Not implemented
1 5 Not implemented
1 6 Not implemented
1 7 Not implemented
1 8 Not implemented
1 9 Not implemented
1 10 Not implemented
1 11 Not implemented
1 ≥12 Reserved
0 0 Instruction address misaligned
0 1 Not implemented
0 2 Illegal instruction
0 3 Breakpoint
0 4 Load address misaligned
0 5 Not implemented
0 6 Store/AMO address misaligned
0 7 Not implemented
0 8 Environment call from U-mode
0 9 Environment call from S-mode
0 10 Not implemented
0 11 Environment call from M-mode
0 12 Not implemented
0 13 Not implemented
0 14 Not implemented
0 15 Not implemented
0 16 ParaNut CoPU exception
0 ≥17 Reserved

Table 3.6.: Machine cause register (mcause) values after trap.

63 0

0 (WARL )

64

Figure 3.10.: Machine time compare register (memory-mapped control register).

3.3.3. Supervisor Control and Status Registers

This chapter describes the RISC-V supervisor-level Control and Status Registers listed
in 3.8, which were originally speci�ed in RISC-V Volume II [3]. Note that these registers
are only available when the ParaNut was con�gured to implement supervisor mode.
In the following subsections, all registers and their �ags are listed and explained if the
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Register Description/Event
mhpmcounter3/h Number of ALU operations since reset. (ADDI, SLTI, SLTIU,

XORI, ORI, ANDI, SLLI, SRLI, SRAI, ADD, SUB, SLL, SLT,
SLTU, XOR, SRL, SRA, OR, AND)

mhpmcounter4/h Number of LOAD operations since reset. (LB, LH, LW, LBU, LHU)
mhpmcounter5/h Number of STORE operations since reset. (SB, SH, SW)
mhpmcounter6/h Number of JUMP/BRANCH operations since reset. (JAL, JALR,

BEQ, BNE, BLT, BGE, BLTU, BLGEU)
mhpmcounter7/h Number of SYSTEM/SPECIAL operations since reset. (FENCE,

ECALL, EBREAK, MRET, CSRRW, CSRRS, CSRRC, CSRRWI,
CSRRSI, CSRRCI)

Table 3.7.: Fixed events of the �rst four counters.

Number Privilege Name Description
Supervisor Trap Setup

0x100 SRW sstatus Supervisor status register.
0x104 SRW sie Supervisor interrupt-enable register.
0x105 SRW stvec Supervisor trap handler base address.

Supervisor Trap Handling
0x140 SRW sscratch Scratch register for supervisor trap handlers.
0x141 SRW sepc Supervisor exception program counter.
0x142 SRW scause Supervisor trap cause.
0x143 SRW stval Supervisor bad address or instruction.

Table 3.8.: Currently allocated supervisor RISC-V CSRs

ParaNut 's behaviour di�ers from the RISC-V speci�cation. All registers may only be
accessed on the CePU. Trying to access them from a CoPU raises an Illegal Instruction
exception.

3.3.3.1. Supervisor Status Register (sstatus)

The �ags listed in Figure 3.11 represent a subset of mstatus and are implementes as
de�ned in [3]. WPRI indicates that the bits are not yet implemented and should be
preserved on writes for forward compatibility reasons.

SXLEN-1 9 8 7 6 5 4 2 1 0

WPRI SPP WPRI SPIE WPRI SIE WPRI

22 1 2 1 3 1 1

Figure 3.11.: Supervisor-mode status register (sstatus) for RV32.
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3.3.3.2. Supervisor Cause Register (scause)

The scause register behaves analogous to mcause and may contain values listed in Ta-
ble 3.6.

SXLEN-1 SXLEN-2 0

Interrupt Exception Code (WLRL)
1 SXLEN-1

Figure 3.12.: Supervisor Cause register scause.

3.3.4. ParaNut -Speci�c Control and Status Registers

Table 3.9 shows the ParaNut -speci�c registers, which are used to query the hardware
con�guration and to read the status of the CPU array. All registers are only available on
a CePU, except for pncoreid, which can also be read by CoPUs. All of these registers
are available in any con�guration of the ParaNut , regardless of which privilege modes
are implemented.

Number Privilege Name Description
ParaNut Machine R/W (Non-Standard R/W)

0x7C0 MRW pncache ParaNut Cache Control register.
ParaNut User R/W (Non-Standard R/W)

0x8C0 URW pngrpsel ParaNut CPU group select.
0x8C1 URW pnce ParaNut CPU enable register.
0x8C2 URW pnlm ParaNut CPU linked mode register.
0x8C3 URW pnxsel ParaNut CoPU exception select register.

ParaNut Machine RO (Non-Standard RO)
0xFC0 MRO pnm2cp ParaNut CPU capabilities register
0xFC1 MRO pnx ParaNut CoPU exception pending.
0xFC2 MRO pncause ParaNut CoPU trap cause ID.
0xFC3 MRO pnepc ParaNut CoPU exception program counter.
0xFC4 MRO pncacheinfo ParaNut cache information.
0xFC5 MRO pncachesets ParaNut number of cache sets.
0xFC6 MRO pnclockinfo ParaNut clock speed information.
0xFC7 MRO pnmemsize ParaNut memory size.

ParaNut User R (Non-Standard R)
0xCD0 URO pncpus ParaNut number of CPUs.
0xCD4 URO pncoreid ParaNut core ID. Can be accessed by CoPUs

Table 3.9.: Currently allocated ParaNut -speci�c CSRs

3.3.4.1. ParaNut CPU group select (pngrpsel)

The pngrpsel register is an MXLEN-bit read-write register formatted as shown in Fig-
ure 3.13. It only takes legal values (illegal values are ignored) and selects the group of 32
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CPUs on which the ParaNut CSRs that work on one bit per CPU (pnce, pnlm, pnxsel,

pnm2cp, pnx) function. On ParaNut systems with fewer than 32 CPUs this register will
only read and hold a value of zero. On systems with more than 32 CPUs pngrpsel should
be checked/set before reading or writing these CSRs.

31 0

pngrpsel (WARL )

32

Figure 3.13.: ParaNut CPU group select (pngrpsel).

3.3.4.2. Supervisor Trap Vector Base Address Register (stvec)

Currently, the lowest two bits are �xed to zero, which indicates that all traps set the
program counter to BASE+4.

SXLEN-1 2 1 0

BASE[SXLEN-1:2] (WARL) Fixed to 0 (WARL)
SXLEN-2 2

Figure 3.14.: Supervisor trap vector base address register (stvec).

3.3.4.3. ParaNut CPU enable register (pnce)

The pnce register is an MXLEN-bit read-write register formatted as shown in Figure 3.15.
It only takes legal values (WARL). Each bit corresponds to one CPU, bit 0 represents
the CePU. By writing into this register, the CePU can activate or deactivate CoPUs. By
reading the register, the CePU can determine whether the CoPU is actually (in)active
(enabled/halted). Both activation and deactivation may take some time until the CoPU
reaches a stable state. On deactivation by the CePU the CoPU is guaranteed to �nish
it's current instruction.
After deactivation the CPU will be in Mode 0. For CPUs with capability ≥ 2 this means
their IFU is reset and upon activation they will start execution at the reset vector address.
In systems with more than 32 CPUs the pngrpsel register must be used to control CoPUs
with core ID > 31.

31 0

pnce (WARL )

32

Figure 3.15.: ParaNut CPU enable register (pnce).

3.3.4.4. ParaNut CPU linked mode register (pnlm)

The pnlm register is an MXLEN-bit read-write register formatted as shown in Figure 3.16.
It only takes legal values (WARL). Each bit corresponds to one CPU and bit 0 represents
the CePU. If the bit is set for CoPU, the CoPU is in linked state (Mode 1). If the bit is

The ParaNut Processor, Gundolf Kiefer et al., November 22, 2021 18



CHAPTER 3. INSTRUCTION SET REFERENCE

unset, it is in unlinked state (Mode 2 or 3). By writing into this register, the CePU can
switch the mode of the CoPUs. Mode switching is allowed only if the CoPU is inactive
and not presently activated. If a bit is changed in the PNLM register and the respective
PNCE bit is 1, unde�ned behavior may result.
In systems with more than 32 CPUs the pngrpsel register must be used to control CoPUs
with core ID > 32.

31 0

pnlm (WARL )

32

Figure 3.16.: ParaNut CPU linked mode register (pnlm).

3.3.4.5. ParaNut CoPU exception select register (pnxsel)

The pnxsel register is an MXLEN-bit read-write register formatted as shown in Fig-
ure 3.16. It only takes legal values (WARL). Each bit corresponds to one CPU and bit
0 represents the CePU. By writing into this register, the CePU can select which CoPUs
exception information can be read from the pnepc and pncause CSRs. Only one bit
should be set at any time to avoid unwanted behavior.
In systems with more than 32 CPUs the pngrpsel register must be used to control CoPUs
with core ID > 31.

31 0

pnxsel (WARL )

32

Figure 3.17.: ParaNut CoPU exception select register (pnxsel).

3.3.4.6. ParaNut Cache control register (pncache)

The pncache register is an MXLEN-bit read-write register formatted as shown in
Figure 3.18. It only takes legal values (WARL).

The DEN �eld enables (1) or disables (0) the use of the cache for data access.

The IEN �eld enables (1) or disables (0) the use of the cache for data access.

31 2 1 0

Reserved DEN IEN
29 1 1

Figure 3.18.: ParaNut Cache control register.
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Writing to these registers does not trigger any �ush or write-back operation. Hence,
when disabling the cache, it must be �ushed or written back by software using the
CFLUSH(A) or CWB(A) instructions listed in Section 3.2.6 if the cache may contain
modi�ed data.

3.3.4.7. ParaNut number of CPUs (pncpus)

The pncpus register is an MXLEN-bit read-only register formatted as shown in Fig-
ure 3.19. It holds the number of CPUs (including the CePU).

31 0

pncpus

32

Figure 3.19.: ParaNut number of CPUs (pncpus).

3.3.4.8. ParaNut CPU capabilities register (pnm2cp)

The pnm2cp register is an MXLEN-bit read-only register formatted as shown in Fig-
ure 3.20. Each bit corresponds to one CPU. If the bit is set, the respective CPU supports
Mode 2 (thread mode) or higher. If unset, the respective CPU supports only Mode 0
(halt) and Mode 1 (linked). Bit 0 represents the CePU and must be set in every imple-
mentation.
In systems with more than 32 CPUs the pngrpsel register must be used to read the
capabilities of CoPUs with core ID > 31.

31 0

pnm2cp

32

Figure 3.20.: ParaNut CPU capabilities register (pnm2cp.

3.3.4.9. ParaNut CoPU exception pending (pnx)

The pnx register is an MXLEN-bit read-only register formatted as shown in Figure 3.21.
Each bit corresponds to one CPU. It is written by hardware on trap entry. If a bit is set,
the represented CoPU encountered an exception and awaits handling.
In systems with more than 32 CPUs the pngrpsel register must be used to read the
pending state of CoPUs with core ID > 31.

31 0

pnx

32

Figure 3.21.: ParaNut CoPU exception pending (pnx).
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3.3.4.10. ParaNut CoPU trap cause ID (pncause)

The pncause register is an MXLEN-bit read-only register formatted as shown in Fig-
ure 3.22. It holds the cause of exception of the CoPU selected by pnxsel and pngrpsel.
The CSR only holds legal values as de�ned in mcause.

31 0

pncause

32

Figure 3.22.: ParaNut CoPU trap cause ID (pncause).

3.3.4.11. ParaNut CoPU exception program counter (pnepc)

The pnepc register is an MXLEN-bit read-only register formatted as shown in Figure 3.23.
It holds the exception program counter of the CoPU selected by pnxsel and pngrpsel.
The CSR only holds legal values as de�ned in mepc.

31 0

pnepc

32

Figure 3.23.: ParaNut CoPU exception program counter (pnepc).

3.3.4.12. ParaNut cache information register (pncacheinfo)

The pncacheinfo register is an MXLEN-bit read-only register formatted as shown in
Figure 3.24. It holds information about the cache properties.

31 8 7 3 2 1 0

Cache Banks Arbiter Method WAYS REPM
24 5 2 1

Figure 3.24.: ParaNut cache information register (pncacheinfo).

The REPM �eld indicates the cache replacement method. A Least Recently Used
(LRU) replacement strategy is used if it is set, else random replacement is in action.

The WAYS �eld shows the associativity of the cache. Valid values are 0, 1 and 2
corresponding to 1, 2 and 4 way associativity.

The Arbiter Method �eld encodes the used method during arbitration of cache and
bus accesses. It is a signed number. On positive values a round-robin arbitration that
switches every 2value clocks is used. On negative values a pseudo-random arbitration
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based on Linear Feedback Shift Registers (LSFR) is used.

The Cache Banks �eld holds the number of cache banks.

The overall size of the available cache can be calculated as:
pncachesets ∗ Cache Banks ∗ 4 Bytes.

3.3.4.13. ParaNut number of cache sets register (pncachesets)

The pncachesets register is an MXLEN-bit read-only register formatted as shown in
Figure 3.25. It holds the number of cache sets.

31 0

pncachesets

32

Figure 3.25.: ParaNut number of cache sets register (pncachesets).

The overall size of the available cache can be calculated as:
pncachesets ∗ Cache Banks ∗ 4 Bytes.

3.3.4.14. ParaNut clock speed information register (pnclockinfo)

The pnclockinfo register is an MXLEN-bit read-only register formatted as shown in
Figure 3.26. It holds the clock speed in Hz set at compile or synthesis time.

31 0

pnclockinfo

32

Figure 3.26.: ParaNut clock speed information register (pnclockinfo.

3.3.4.15. ParaNut memory size register (pnmemsize)

The pnmemsize register is an MXLEN-bit read-only register formatted as shown in
Figure 3.27. It holds the memory size set at compile or synthesis time.

3.3.4.16. ParaNut core ID register (pncoreid)

The pncoreid register is an MXLEN-bit read-only register formatted as shown in
�gure 3.28. It is the only register accesible from CoPUs. This is required to initiate
LinkedMode.
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31 0

pnmemsize

32

Figure 3.27.: ParaNut memory size register (pnmemsize).

31 0

pncoreid

32

Figure 3.28.: ParaNut core ID register (pncoreid).

3.4. Exceptions

Table 3.6 lists the exceptions supported by the ParaNut architecture. At the moment,
only those classi�ed as implemented can occur in the CePU. In a CoPU of mode 2 the
same exceptions may arise, excluding the ParaNut CoPU exception, which is used to
signal to the CePU that an exception occured in one of the CoPUs.

If an exception occurs in the CePU, the following steps are performed:

1. Trap information is saved to the following registers:

• The address of the current instruction (PC) in mepc

• The appropriate cause in mcause

• The current value of the pnx input port in pnx

• Interrupts are disabled by writing the value of MIE to MPIE and setting MIE
to zero in mstatus

2. The CePU triggers and waits for all CoPUs (enabled/linked or not) to change into
Mode 0 (halt) after they �nish their current instruction.

3. Execution is continued at the address saved in the mtvec register.

4. Execution of the exception handler

5. The exception handler �nishes by using the MRET instruction which continues
execution at the address saved in mepc and takes all CoPUs back to their previous
exception state.

The change in execution mode in step 2 is not visible to the programmer through
the pnce or pnlm CSRs. However writing to these registers will in�uence/change
the execution mode of the CoPUs after executing the MRET instruction in the CePU.

We decided on this approach to simplify the hardware and remove the need
for shadow registers which save the state of the pnce or pnlm CSRs on exception
entry.
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If an exception occurs inside a Mode 2 CoPU, the following steps are performed:

1. The CoPU halts itself and signals an exception to the CePU.

2. The CePU �nishes it's current instruction and starts the exception handling proce-
dure as described above with the special CoPU exception cause (see Table 3.6).

3. The CePU triggers and waits for all CoPUs (enabled/linked or not) to change into
their exception state after they �nish their current instruction.

4. Execution is continued at the address saved in the mtvec register.

5. Execution of the exception handler

• By reading pnx the exception handler can determine on which CoPU(s) an
exception occurred and after setting the pnxsel CSR the cause and PC of the
selected CoPU can be read from the pncause and pnepc.

• The CoPU must be enabled through pnce to indicate that the exception was
handled and that the execution can continue for the next instruction. (Note:
otherwise the CoPU will still indicate an exception to the CePU, which in turn
will reenter the exception handling procedure again)

6. The exception handler �nishes by using the MRET instruction which continues
execution at the address saved in mepc and takes all CoPUs out of their exception
state.

If an exception occurs inside a Mode 1 CoPU, the following steps are performed:

1. If any of the CoPUs is in linked mode (Mode 1), all Mode-1-CoPUs and the CePU
must be designed such that they either all complete their current instruction or all
of them perform a roll back. If this is not ensured, the interrupted code is not
restartable.

2. The CoPU halts itself and signals an exception to the CePU.

3. The CePU starts the exception handling procedure as described above with the
special CoPU exception cause (see Table 3.6).

4. The CePU triggers and waits for all CoPUs (enabled/linked or not) to change into
their exception state after they �nish their current instruction.

5. Execution is continued at the address saved in the mtvec register.

6. Execution of the exception handler

• By reading pnx the exception handler can determine on which CoPU(s) an
exception occurred and after setting the pnxsel CSR the cause and PC of the
selected CoPU can be read from the pncause and pnepc.

• The CoPU must be enabled through pnce to indicate that the exception was
handled. (Note: otherwise the CoPU will still indicate an exception to the
CePU, which in turn will reenter the exception handling procedure again)
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7. The exception handler �nishes by using the MRET instruction which continues
execution at the address saved in mepc and takes all CoPUs out of their exception
state.
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A. Appendix

A.1. Building software for the ParaNut processor

Prerequisites:

• The RISC-V GCC toolchain.

• Built SystemC simulation (paranut_tb).

The ParaNut repository contains tested software in the sw folder. A good starting
point for developing your own software would be the hello_newlib example. It contains
following �les:

1 #include <stdio.h>

2 #include <unistd.h>

3

4 int main () {

5 int n;

6

7 for (n = 1; n <= 10; n++)

8 printf ("%2i. Hello World!\n", n);

9 return 0;

10 }

Listing A.1: hello_newlib.c, simple application using the newlib

1 # Root of ParaNut repository or local project

2 PARANUT ?= ../..

3

4 # Flash target options

5 PN_FIRMWARE_ELF ?=

6 PN_SYSTEM_HDF ?=

7 PN_SYSTEM_BIT ?=

8

9 # Configuration options

10 CROSS_COMPILE ?= riscv64-unknown-elf

11

12 CC := $(CROSS_COMPILE)-gcc

13 GXX := $(CROSS_COMPILE)-g++

14 OBJDUMP := $(CROSS_COMPILE)-objdump

15 OBJCOPY := $(CROSS_COMPILE)-objcopy

16 GDB := $(CROSS_COMPILE)-gdb
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17 AR := $(CROSS_COMPILE)-ar

18 SIZE := $(CROSS_COMPILE)-size

19

20 ELF = hello_newlib

21 SOURCES = $(wildcard *.c)

22 OBJECTS = $(patsubst %.c,%.o,$(SOURCES))

23 HEADERS = $(wildcard *.h)

24

25 PN_SYSTEMS_DIR = $(PARANUT)/systems

26 RISCV_COMMON_DIR = $(PARANUT)/sw/riscv_common

27

28 CFG_MARCH ?= rv32i

29

30 CFLAGS = -O2 -march=$(CFG_MARCH) -mabi=ilp32 -I$(RISCV_COMMON_DIR)

31 LDFLAGS = $(CFLAGS) -static -nostartfiles -lc $(RISCV_COMMON_DIR)/startup.S $(

RISCV_COMMON_DIR)/syscalls.c -T $(RISCV_COMMON_DIR)/paranut.ld

32

33 # Software Targets

34 all: $(ELF) dump

35

36 $(ELF): $(OBJECTS)

37 $(CC) -o $@ $^ $(LDFLAGS)

38

39 %.o: %.c $(HEADERS)

40 $(CC) -c $(CFLAGS) $<

41

42

43 # ParaNut Targets

44 .PHONY: sim

45 sim: $(ELF)

46 +$(MAKE) -C $(PARANUT)/hw/sim pn-sim

47 $(PARANUT)/hw/sim/pn-sim -t0 $<

48

49 # Generic Flash targets (set PN_* accordingly)

50 .PHONY: flash flash-bit

51 flash: bin

52 pn-flash -c -p $(ELF).bin $(PN_SYSTEM_HDF) $(PN_FIRMWARE_ELF)

53

54 flash-bit: bin

55 pn-flash -c -b $(PN_SYSTEM_BIT) -p $(ELF).bin $(PN_SYSTEM_HDF) $(

PN_FIRMWARE_ELF)

56

57

58 # Special System Flash targets for testing inside the source repository

59 .PHONY: flash-%

60 flash-%: bin

61 if [ ! -d $(PN_SYSTEMS_DIR) ]; then echo; echo "INFO: The flash targets are

only for testing inside the source repository!"; echo; exit 1; fi

62 pn-flash -c -p $(ELF).bin $(PN_SYSTEMS_DIR)/$*/hardware/build/system.hdf $(

PN_SYSTEMS_DIR)/$*/hardware/firmware/firmware.elf
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63

64 flash-%-bit: bin

65 if [ ! -d $(PN_SYSTEMS_DIR) ]; then echo "INFO: The flash targets are only for

testing inside the source repository!"; exit 1; fi

66 pn-flash -c -b $(PN_SYSTEMS_DIR)/$*/hardware/build/system.bit -p $(ELF) \

67 $(PN_SYSTEMS_DIR)/$*/hardware/build/system.hdf $(PN_SYSTEMS_DIR)/$*/hardware/

firmware/firmware.elf

68

69

70 # Misc Targets

71 .PHONY: dump

72 dump: $(ELF).dump

73 $(ELF).dump: $(ELF)

74 $(OBJDUMP) -S -D $< > $@

75

76 .PHONY: bin

77 bin: $(ELF).bin

78 $(ELF).bin: $(ELF)

79 $(OBJCOPY) -S -O binary $< $@

80

81 .PHONY: clean

82 clean:

83 rm -f *.o *.o.s *.c.s $(ELF) $(ELF).bin $(ELF).dump

Listing A.2: Make�le, for building software with the newlib

The Make�le requires the correct path to the top-level paranut folder PN_PARANUT set
correctly to include the following ParaNut speci�c �les:

• startup.s: ParaNut startup �le containing the reset routine.

• syscalls.c: Implementation of the system calls required by the newlib (libgloss).

• encoding.h: De�nes and other helpers.

• paranut.ld: Linker script for the ParaNut memory model.

By default the parameter CFG_MARCH is set to rv32i (only RV32I instructions). These
can be changed according to the con�guration made in the global con�g �le.

To build the hello_newlib application follow these steps (provided you are currently
in the top level directory of the paranut repository):

$ cd sw/hello_newlib

$ make

Example for a build with di�erent con�guration:

$ make CFG_MARCH=rv32im
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A.1.1. Run the application in the SystemC simulation

To run the application in the SystemC simulation run the paranut_tb with the built
ELF �le as parameter:

$ $PARANUT_HOME/hw/sim/pn-sim hello_newlib

Or use the sim target of the Make�le:

$ make sim

To get a GTK-Wave compatible trace �le run the SystemC simulation with the -t

parameter and a number bigger than 0:

$ $PARANUT_HOME/hw/sim/pn-sim -t1 hello_newlib

• -t0: No trace �le will be generated.

• -t1: Top level bus and paranut signals.

• -t2: First level of internal module signals (EXU, MEMU, IFU, LSU, ...).

• -t3: Second level of internal modules (MExtension, ReadPorts, WritePorts, ...)

A.2. Using GDB with the SystemC simulation

Prerequisites:

• The RISC-V compatible OpenOCD (See https://github.com/riscv/

riscv-tools) for build instructions.

• The RISC-V GCC toolchain.

• Built SystemC simulation (paranut_tb).

• Built RISC-V application (with debug symbols and without optimization) (A.1).

The ParaNut SystemC simulation is compatible with the RISC-V External Debug
Support Version 0.13. Thus it can be debugged using the GNU Debugger (GDB) of
the RISC-V toolchain. Since the ParaNut simulation acts like real hardware we use
OpenOCD to communicate with GDB.

Run the SystemC simulation with the ELF �le you want to debug and the -d parameter
to tell it to wait for a OpenOCD connection:

e.g. local repository:
$ $PARANUT_HOME/hw/sim/pn-sim -d hello_newlib

e.g. installed:
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$ $PARANUT_HOME/bin/pn-sim -d hello_newlib

In a new shell start OpenOCD and use the tools/etc/openocd-sim.cfg con�guration
�le:

Currently you have to use the OpenOCD built with the RISC-V tools. If you have not
added the $RISCV/bin folder to your PATH or have a di�erent version installed start
OpenOCD with the full path name to avoid errors. E.g. /opt/riscv/bin/openocd

$ openocd -f $PARANUT_TOOLS/etc/openocd-sim.cfg

In yet another shell start the RISC-V GDB debug session:

$ riscv64-unknown-elf-gdb hello_newlib

Lastly connect to OpenOCD as remote target:

(gdb) target remote localhost:3333

Now you are able to use all standard GDB commands to debug the application:

(gdb) break main

(gdb) continue

(gdb) next

(gdb) print n

(gdb) help

To reset the processor and start from the reset vector use following command:

(gdb) monitor reset halt

This will automatically reload the ELF �le into the simulated memory.

A.3. Using and debugging the hardware

Prerequisites:

• The RISC-V compatible OpenOCD (See https://github.com/riscv/

riscv-tools) for build instructions.

• The RISC-V GCC toolchain.
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• Supported FPGA board (e.g. Digilent Zybo, Digilent Zybo Z7-20)

• A JTAG debugger (e.g. Amontec JTAGkey)

• Built RISC-V application (with debug symbols and without optimization) (A.1).

The ParaNut reference system located in the systems directory can be debugged using
a standard JTAG debugger. The ParaNut processor in this system is compatible with
the RISC-V External Debug Support Version 0.13. Thus it can be debugged using the
GNU Debugger (GDB) of the RISC-V toolchain.

Build the reference design for the hardware you are using:

$ cd systems/refdesign

e.g. Digilent Zybo:
$ make build BOARD=zybo

e.g. Digilent Zybo Z7
$ make build BOARD=zybo_z7020

This will also build a �rmware for the ARM core on these boards and a copy of the
hello_newlib software in to the software directory.
Connect the board to your PC and program the �rmware, bit�le and RISC-V software

to the board by executing following command (see the Make�le to see the full command
using the pn-�ash tool):

$ make -C systems/refdesign run

A console will stay running and showing the standard output of the ParaNut processor.
After a few seconds to invalidate the cache the �Hello World� messages should be visible.

Connect the JTAG debugger outputs to the JD Pmod pin header on the boards as
shown in Table A.1. The table displays how the pins coming from the Amontec JTAGkey
should be connected, so JD10 is TDI of the ParaNut JTAG TAP and JD7 is its TDO.

VCC GND JD4 JD3 JD2 JD1

N.C. N.C. N.C. N.C. N.C. N.C.
VCC GND JD10 JD9 JD8 JD7

VREF GND TDO TCK TMS TDI

Table A.1.: JD Pmod Port JTAG pin connections for the Amontec JTAGkey

In a new shell start OpenOCD and use the tools/etc/openocd-board.cfg con�gura-
tion �le if you use the Amontec JTAGkey (modify the con�guration if you use a di�erent
JTAG debugger):
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Currently you have to use the OpenOCD built with the RISC-V tools. If you have not
added the $RISCV/bin folder to your PATH or have a di�erent version installed start
OpenOCD with the full path name to avoid errors. E.g. /opt/riscv/bin/openocd

$ openocd -f $PARANUT_TOOLS/etc/openocd-board.cfg

In yet another shell start the RISC-V GDB debug session:

$ riscv64-unknown-elf-gdb software/hello_newlib

Lastly connect to OpenOCD as remote target:

(gdb) target remote localhost:3333

Now you are able to use all standard GDB commands to debug the application:

(gdb) break main

(gdb) continue

(gdb) next

(gdb) print n

(gdb) help

Load the elf again through GDB:

(gdb) load

To reset the processor and start from the reset vector use following command:

(gdb) monitor reset halt

A.4. Integrating your own hardware modules

Due to the permissive license of the ParaNut project, anyone is allowed to add modules.
In general, there are two ways to do so:
- Integrating an AXI compatible module to the SoC
- Extending the ParaNut architecture/hardware itself.
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A.4.1. AXI compatible modules

A.4.2. Extending the ParaNut architecture/hardware

For simpli�cation, all steps are explained with the CSR module as an example.

1. Develop your module and adapt the other modules according to your needs.

2. Integrate your SystemC module into the simulator (if developing in VHDL, you can
skip to step 4

• In the easiest case, you can instantiate a submodule in the parent module (sim-
ilar to the MMExtension submodule inside the ExU - see mextension.h/cpp

and exu.h/cpp). However, this inhibits the High Level Synthesis in case the
submodule and the parent module include the same header �le

• For any other case, create a signal for each port of your new module in
paranut.h. Afterwards, instantiate the module in paranut.cpp and bind all
ports to their corresponding signal as well as all newly created ports in the
other modules.

3. High Level Synthesis (HLS)

• Copy a HLS script in sysc, e.g. exu.tcl, name it similar to your source �le
(csr.tcl) and change the following parameters:

� open_project (the Vivado HLS project name and resulting folder; usually
the modules name pre�xed by hls-: hls-csr)

� set_top (the module name, i.e. the SystemC class: MCsr)

� add_files (all source �les: csr.cpp)

• The script will automatically be executed when creating the IP core. You may
also run the script manually by executing make copy-yourmodulesname (make
copy-csr)

• The resulting �les of HLS are �les are copied to the directory hw/rtl/vhdl/

and are usually pre�xed with the the modules name (MCsr*.vhd)

4. Now copy two new �les in hw/rtl/vhdl/ similar to mcsr.vhd for the module wrap-
per and csr.vhd for the port declaration; adapt them to your module. This step
hides all ports behind a more convenient port declaration, usually named similar
to the module and pre�xed with i for its input ports or an o for output ports
respectively (csri, csro).

5. In the �le hw/bin/paranut.tcl, add all newly created �les to the corresponding
section. Hint: add the results of the HLS (MCsr*.vhd) or any other VHDL �les and
the two �les from step 4 (mcsr.vhd, csr.vhd).

6. Connect all ports in hw/rtl/vhdl/paranut.vhd to each other.
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