
The ParaNut Processor
Architecture Description and Reference Manual

Gundolf Kiefer
Hochschule Augsburg – University of Applied Sciences

gundolf.kiefer@hs-augsburg.de

Version 0.2.0
February 27, 2015

This work is licensed under the Creative Commons Attribution-ShareAlike
3.0 Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Document History
Version Date Description
0.2.0 2015-02-19 Initial public release

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 ii

Contents

1. Introduction 1

2. The ParaNut Architecture 2
2.1. Instruction Set Architecture . 2
2.2. Structural Organisation . 2
2.3. Execution Modes and Capabilities . 4
2.4. SIMD Vectorization . 5
2.5. Multi-Threading . 5

3. Instruction Set Reference 7
3.1. Instructions . 7

3.1.1. ALU Instructions . 7
3.1.2. Load & Store Instructions . 23
3.1.3. Control Flow Instructions . 27
3.1.4. Special Instructions . 32
3.1.5. ParaNut Extensions . 33

3.2. Special-Purpose Registers . 34
3.2.1. Supervision Register (SR) . 36
3.2.2. Version Register (VR) . 36
3.2.3. Unit Present Register (UPR) . 36
3.2.4. CPU Configuration Register (CPUCFGR) 36
3.2.5. Data Cache Configuration Register (DCCFGR) 36

3.3. Exceptions . 40

Bibliography 43

Index 44

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 iii

1. Introduction
The goal of the ParaNut project is to develop an open, scalable and practically usable
multi-core processor architecture for embedded systems. Scalability is given by supporting
parallelism at thread and data level based on multiple processing cores while keeping the
design of the individual core itself as simple as possible.
ParaNut introduces a unique concept for SIMD (single instruction, multiple data) vec-

torization. Whereas SIMD extensions for workstation processors or embedded systems
frequently contain specialized instructions leading to an inherently bad compiler support,
SIMD code for the ParaNut can be programmed in a high-level language according to a
paradigm very similar to thread programming.
The instruction set is kept compatible to the OpenRISC 1000 specification. Hence,

the OpenRISC GCC tool chain and libraries/operation systems (newlib, Linux with some
necessary extensions) can be used with the ParaNut .
To date, the ParaNut project is still work in progress, and new contributors from in-

dustry and academia are welcome. An informal project overview including the implemen-
tation status and very promising benchmark results can be found in [1].

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 1

2. The ParaNut Architecture

2.1. Instruction Set Architecture
The ParaNut instruction set architecture is compatible with the OpenRISC 1000 speci-
fication. The OpenRISC 1000 architecture is a 32-bit load and store RISC architecture
designed with the purpose to support a spectrum of chip and system implementations [2].
Scalability is achieved by defining a minimalistic basic instruction set (ORBIS32) together
with optional extensions including a floating-point unit (FPU) or a memory management
unit (MMU). Furthermore, the basic architecture offers configuration options such as
different register file sizes or optional arithmetic instructions.
ParaNut processors implement all mandatory instructions according to the ORBIS32

specification. Features unique to ParaNut require some additional ParaNut -specific in-
structions. These will be encapsulated in a small support library, so that they are still
usable without compiler modifications. For software development, the GCC tool chain
from the OpenRISC project can be used without any modifications. A cycle-accurate
SystemC model can be used as an instructions set simulator. To date, an operating envi-
ronment based on the "newlib" C library allows to compile and run software both in the
simulator and on real hardware.

2.2. Structural Organisation
The general structure of ParaNut is depicted in Figure 2.1. The core contains one Central
Processing Unit (CePU) and a number of Co-Processing Units (CoPU). The CePU is a
full-featured CPU, whereas the CoPUs are CPUs with a more or less reduced functionality
and complexity. Depending on the mode of execution (see below), the CoPUs may either
be inactive (sequential code), execute a part of a vector operation, or execute a thread.
In the sequel, the term CPU refers to any of a CePU or a CoPU.
All the CPUs are connected to a central Memory Unit (MemU). The MemU contains

the cache(s) and means to support synchronisation primitives. It provides a single bus
interface to the main system bus, and independent read and write ports for each CPU. It
is optimized to support parallel accesses by different CPUs. In particular, multiple read
accesses to the same address can be served in parallel and run no slower than a single
access, and accesses to neighboring addresses can mostly be served in parallel. These two
properties are particularly important for the SIMD-like mode.
Each CPU contains an ALU, a register file and some control logic which together form

the Execution Unit (ExU). The Instruction Fetch Unit (IFU) is responsible for fetching
instructions from the memory subsystem and contains a small buffer for prefetching in-
structions. The Load-Store Unit (LSU) is responsible for performing the data memory
accesses of load and store operations. It contains a small store buffer and implements write
combining and store forwarding mechanisms as well as mechanisms to support atomic op-

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 2

CHAPTER 2. THE PARANUT ARCHITECTURE

Figure 2.1.: A ParaNut instance with 4 cores

erations.
The Execution Unit is designed and optimized for a best-case throughput of one instruc-

tion in two clock cycles (CPI~=~2, CPI = "clocks per instruction"). This is slower than
modern pipeline designs targeting a best-case CPI value of 1. However, it allows to better
optimize the execution unit for area, since no pipeline registers or extra components for
the detection and resolution of pipeline conflicts are required. Furthermore, in a multi-
core system, the performance is likely to be limited by bus and memory contention effects
anyway, so that an average CPI value of 1 is expected to be hardly achievable in practice.
In the ParaNut design, several measures help to maintain an average-case throughput
very close to the best-case value of CPI~=~2, even for multi-core implementations.
The design of the memory interface and cache organization is very critical for the scala-

bility of many-core systems. In a ParaNut system, the Memory Unit (MemU) contains the
cache, the system bus interface, and a multitude of read and write ports for the processor
cores. Each core is connected to the MemU by two independent read ports for instructions
and data and one write port for data. The cache memory logically operates as a shared
cache for all cores and is organized in independent banks with switchable paths from each
bank to each read and write port. Tag data is replicated to allow arbitrary concurrent
lookups. Parallel cache data accesses by different ports can be performed concurrently if
their addresses a) map to different banks or b) map to the same memory word in the same
bank. Furthermore, by using dual-ported Block-RAM cells, each bank can be equipped
with two ports, so that up to two conflicting accesses (i.~e. same bank, different ad-
dresses) are possible in parallel. Hence, even for many cores, the likelihood of contention
can be arbitrarily reduced by increasing the number of banks, which is configurable at
synthesis time.

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 3

CHAPTER 2. THE PARANUT ARCHITECTURE

The cache can be configured to be 1/2/4-way set associative with configurable replace-
ment strategies (e.g. pseudo-random or least-recently used). The Memory Unit imple-
ments mechanisms for uncached memory accesses (e.g. for I/O ports) and support for
atomic operations. All transactions to and from the system bus are handled by a bus
interface unit, which presently supports the Wishbone bus standard, but can easily be
replaced to support other busses such as AXI.

2.3. Execution Modes and Capabilities
A CPU in the ParaNut architecture can run in 4 different modes:

Mode 0 (Halted): The CPU is inactive.

Mode 1 (Linked): The CPU does not fetch instructions, but executes the instruction
stream fetched by the CPU.

Mode 2 (Unlinked): The CPU fetches and executes its own instructions. Exceptions trig-
ger an exception of the controlling CePU and put this CPU into Mode 0.
The CePU can later put this CPU into Mode 2 again, and the code execution
continues as if the exception has been handled by this CPU.

Mode 3 (Autonomous): The CPU executes its own instructions. Exceptions and inter-
rupts can be handled by this CPU.

Typically, the CePU always runs in Mode 3. The mode of the CoPUs is controlled by
the CePU. Depending on the application, the CoPUs can be customized that they only
support a subset of the 4 modes. For example, if only SIMD vectorization and no multi-
threading is required, all the logic required for modes 2 and 3 can be stripped off. Now,
the CoPU does not require much more area than a vector slice of a normal SIMD unit
would. In general, a CoPU is customized for a capability level of m, meaning that all
modes ≤ m are supported.

• A Capability-1-CoPU only contains very little logic besides the ALU and the register
file. Hence, a ParaNut with only Capability-1-CoPUs does not require much more
area than a normal SIMD processor.

• A Capability-2-CoPU additionally contains an instruction fetch unit and eventually
one more read port to the Memory Unit (MemU) for it.

• A Capability-3-CoPU is basically a full-featured CePU. It contains logic to handle
interrupts and exceptions and has its own set of special registers. This is not needed
for multi-threading, but for multi-processing, where each CoPU is managed by the
operating system as an individual CPU.

Figure 2.2 illustrates the active/required hardware for the 4 modes. The following sections
briefly illustrate how SIMD vectorization or multi-threading can be performed. Further
informal explanations and examples can be found in [1].

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 4

CHAPTER 2. THE PARANUT ARCHITECTURE

Figure 2.2.: ParaNut modes and required logic

2.4. SIMD Vectorization
In Mode 1, the CoPU performs exactly the same instructions as the CePU. This is the
SIMD mode. All registers of the CePU can be regarded as a slice of a big vector register.
Since all CPUs perform the same operation at a time, the memory bandwidth required for
instruction fetching is reduced considerably and equivalent to the bandwith of a single-core
processor.
From a software perspective, the code on a CoPU executes almost normally, just like

multi-threaded code. There is only a single, well-defined exception: Conditional branches
and jump instructions with variable target addresses are executed based on target address
determined by the CePU. In the C language, such critical instructions can be generated out
of “if” statements, “case” statements and loop constructs. As long as the conditions always
evaluate equally on all CPUs, SIMD code can be easily written using a standard compiler
and a thread-like programming model. Figure 2.3 shows an example of a vectorized
loop. The macros ’pn_begin_linked’ and ’pn_end_linked’ open and close a parallel code
section, respectively. Since the body of the “for” loop does not contain any conditional
branches and the loop end condition “n < 100” always evaluates equally on all CPUs,
this is code is executable on an SIMD-based processor variant.

2.5. Multi-Threading
To perform classical simultaneous multi-threading, the CoPUs are put into Mode 2. In
this mode, all exceptions and interrupts are handled by the CePU. This is somewhat a
limitation compared to Mode 3, in which the CPUs operate more autonomously. However,
Mode 2 is sufficient for all typical applications, in which multi-threading is used as an
acceleration measure.

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 5

CHAPTER 2. THE PARANUT ARCHITECTURE

int a [1 0 0] , b [1 0 0] , s [1 0 0] ;

void add_arrays_sequentia l () {
for (n = 0 ; n < 100 ; n += 1)

s [n] = a [n] + b [n] ;
}

void add_arrays_para l l e l () {
int n , cpu_no ;

// Ac t i va t e 3 (=4−1) CoPUs in the " Linked " s t a t e and
// ge t the number o f t h i s CPU. . .
pn_begin_linked (4) ;
cpu_no = pn_get_cpu_no () ;

for (n = 0 ; n < 100 ; n += 4)
s [n + cpu_no] = a [n + cpu_no] + b [n + cpu_no] ;

// performs 4 a d d i t i o n s in p a r a l l e l

// End l i n k e d mode , d e a c t i v a t e the CoPUs . . .
pn_end_linked () ;

}

Figure 2.3.: Example of a vectorized loop

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 6

3. Instruction Set Reference
This chapter contains the complete instruction set reference for the ParaNut architecture.
For completeness, the descriptions of the OpenRISC 1000 (OR1k) instructions and regis-
ters implemented by ParaNut have been copied from the specification manual [2]. Clari-
fications and deviations from the OR1k specification are marked as such in the following
sections.

3.1. Instructions
3.1.1. ALU Instructions
l.add – Add

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111000 ddddd aaaaa bbbbb - 00 ---- 0000

Format: l.add rD, rA, rB

Description: The contents of the general-purpose registers rA and rB are added. The
result is placed into rD.

Operation: rD <- rA + rB
SR[CY] <- Carry
SR[OV] <- Overflow

Exceptions: Range Exception

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 7

CHAPTER 3. INSTRUCTION SET REFERENCE

l.addc – Add with Carry

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111000 ddddd aaaaa bbbbb - 00 ---- 0001

Format: l.addc rD, rA, rB

Description: The contents of the general-purpose registers rA, rB, and the carry flag
are added. The result is placed into rD.

Operation: rD <- rA + rB + SR[CY]
SR[CY] <- Carry
SR[OV] <- Overflow

Exceptions: Range Exception

l.sub – Subtract

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111000 ddddd aaaaa bbbbb - 00 ---- 0010

Format: l.sub rD, rA, rB

Description: The contents of the general-purpose register rB is subtracted from rA.
The result is placed into rD.
Note: The OR1k specification does not clearly specify whether the carry
flag is affected or not.

Operation: rD <- rA - rB
SR[CY] <- Carry
SR[OV] <- Overflow

Exceptions: Range Exception

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 8

CHAPTER 3. INSTRUCTION SET REFERENCE

l.and – Logical AND

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111000 ddddd aaaaa bbbbb - 00 ---- 0011

Format: l.and rD, rA, rB

Description: A bit-wise logical AND operation is performed on the contents of the
general-purpose registers rA and rB. The result is placed into rD.

Operation: rD <- rA and rB

Exceptions: None

l.or – Logical OR

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111000 ddddd aaaaa bbbbb - 00 ---- 0100

Format: l.or rD, rA, rB

Description: A bit-wise logical OR operation is performed on the contents of the
general-purpose registers rA and rB. The result is placed into rD.

Operation: rD <- rA or rB

Exceptions: None

l.xor – Logical XOR

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111000 ddddd aaaaa bbbbb - 00 ---- 0101

Format: l.xor rD, rA, rB

Description: A bit-wise logical XOR operation is performed on the contents of the
general-purpose registers rA and rB. The result is placed into rD.

Operation: rD <- rA xor rB

Exceptions: None

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 9

CHAPTER 3. INSTRUCTION SET REFERENCE

l.sll – Shift Left Logical

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111000 ddddd aaaaa bbbbb - 00 00-- 1000

Format: l.sll rD, rA, rB

Description: The contents of register rA are shifted left by the number of bit positions
specified in register rB. Low-order bits are filled with 0. The result is
placed into rD.

Operation: rD[31:rB[4:0]] <- rA[31-rB[4:0]:0]
rD[rB[4:0]-1:0] <- 0

Exceptions: None

l.srl – Shift Right Logical

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111000 ddddd aaaaa bbbbb - 00 01-- 1000

Format: l.srl rD, rA, rB

Description: The contents of register rA are shifted right by the number of bit positions
specified in register rB. High-order bits are filled with 0. The result is
placed into rD.

Operation: rD[31-rB[4:0]:0] <- rA[31:rB[4:0]]
rD[31:32-rB[4:0]] <- 0

Exceptions: None

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 10

CHAPTER 3. INSTRUCTION SET REFERENCE

l.sra – Shift Right Arithmetic

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111000 ddddd aaaaa bbbbb - 00 10-- 1000

Format: l.sra rD, rA, rB

Description: The contents of register rA are shifted right by the number of bit positions
specified in register rB. High-order bits are filled with rA[31]. The result
is placed into rD.

Operation: rD[31-rB[4:0]:0] <- rA[31:rB[4:0]]
rD[31:32-rB[4:0]] <- rA[31]

Exceptions: None

l.cmov – Conditional Move

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111000 ddddd aaaaa bbbbb - 00 ---- 1110

Format: l.cmov rD, rA, rB

Description: If SR[F] is set, general-purpose register rA is placed into register rD. Oth-
erwise, register rB is placed into rD.

Operation: rD[31:0] < - SR[F] ? rA[31:0] : rB[31:0]

Exceptions: None

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 11

CHAPTER 3. INSTRUCTION SET REFERENCE

l.mul – Multiply Signed

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111000 ddddd aaaaa bbbbb - 11 ---- 0110

Format: l.mul rD, rA, rB

Description: The contents of registers rA and rB are multiplied. The result is truncated
to 32 bit and placed into register rD. Both operands are treated as signed
integers.
None (Note: In contrast to the OR1k specification, the flags CY and OV
are not affected, and no range exception can be generated.

Operation: rD <- rA * rB

Exceptions: None (OR1k: Range Exception)

l.mulu – Multiply Unsigned

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111000 ddddd aaaaa bbbbb - 11 ---- 1011

Format: l.mulu rD, rA, rB

Description: The contents of registers rA and rB are multiplied. The result is truncated
to 32 bit and placed into register rD. Both operands are treated as unsigned
integers.
None (Note: In contrast to the OR1k specification, the flags CY and OV
are not affected.

Operation: rD <- rA * rB

Exceptions: None (OR1k: Range Exception)

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 12

CHAPTER 3. INSTRUCTION SET REFERENCE

l.sfeq – Set Flag if Equal

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111001 00000 aaaaa bbbbb - -- ---- ----

Format: l.sfeq rA, rB

Description: The contents of registers rA and rB are compared. The flag SR[F] is set,
if they are equal, and unset otherwise.

Operation: SR[F] <- (rA == rB)

Exceptions: None

l.sfne – Set Flag if Not Equal

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111001 00001 aaaaa bbbbb - -- ---- ----

Format: l.sfne rA, rB

Description: The contents of registers rA and rB are compared. The flag SR[F] is set,
if they are different, and unset otherwise.

Operation: SR[F] <- (rA != rB)

Exceptions: None

l.sfgtu – Set Flag if Greater Than Unsigned

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111001 00010 aaaaa bbbbb - -- ---- ----

Format: l.sfgtu rA, rB

Description: The contents of registers rA and rB are interpreted as unsigned numbers
and compared. The flag SR[F] is set, if rA > rB, and unset otherwise.

Operation: SR[F] <- (rA > rB)

Exceptions: None

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 13

CHAPTER 3. INSTRUCTION SET REFERENCE

l.sfgeu – Set Flag if Greater or Equal Unsigned

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111001 00011 aaaaa bbbbb - -- ---- ----

Format: l.sfgeu rA, rB

Description: The contents of registers rA and rB are interpreted as unsigned numbers
and compared. The flag SR[F] is set, if rA >= rB, and unset otherwise.

Operation: SR[F] <- (rA >= rB)

Exceptions: None

l.sfltu – Set Flag Less Than Unsigned

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111001 00100 aaaaa bbbbb - -- ---- ----

Format: l.sfltu rA, rB

Description: The contents of registers rA and rB are interpreted as unsigned numbers
and compared. The flag SR[F] is set, if rA < rB, and unset otherwise.

Operation: SR[F] <- (rA < rB)

Exceptions: None

l.sfleu – Set Flag if Less or Equal Unsigned

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111001 00101 aaaaa bbbbb - -- ---- ----

Format: l.sfleu rA, rB

Description: The contents of registers rA and rB are interpreted as unsigned numbers
and compared. The flag SR[F] is set, if rA <= rB, and unset otherwise.

Operation: SR[F] <- (rA <= rB)

Exceptions: None

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 14

CHAPTER 3. INSTRUCTION SET REFERENCE

l.sfgts – Set Flag if Greater Than Signed

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111001 01010 aaaaa bbbbb - -- ---- ----

Format: l.sfgts rA, rB

Description: The contents of registers rA and rB are interpreted as signed numbers and
compared. The flag SR[F] is set, if rA > rB, and unset otherwise.

Operation: SR[F] <- (rA > rB)

Exceptions: None

l.sfges – Set Flag if Greater or Equal Signed

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111001 01011 aaaaa bbbbb - -- ---- ----

Format: l.sfges rA, rB

Description: The contents of registers rA and rB are interpreted as signed numbers and
compared. The flag SR[F] is set, if rA >= rB, and unset otherwise.

Operation: SR[F] <- (rA >= rB)

Exceptions: None

l.sflts – Set Flag Less Than Signed

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111001 01100 aaaaa bbbbb - -- ---- ----

Format: l.sflts rA, rB

Description: The contents of registers rA and rB are interpreted as signed numbers and
compared. The flag SR[F] is set, if rA < rB, and unset otherwise.

Operation: SR[F] <- (rA < rB)

Exceptions: None

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 15

CHAPTER 3. INSTRUCTION SET REFERENCE

l.sfles – Set Flag if Less or Equal Signed

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111001 01101 aaaaa bbbbb - -- ---- ----

Format: l.sfles rA, rB

Description: The contents of registers rA and rB are interpreted as signed numbers and
compared. The flag SR[F] is set, if rA <= rB, and unset otherwise.

Operation: SR[F] <- (rA <= rB)

Exceptions: None

l.addi – Add Immediate

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

100111 ddddd aaaaa iiiii i ii iiii iiii

Format: l.addi rD, rA, I

Description: The contents of the general-purpose registers rA and the sign-extended
immediate value I are added. The result is placed into rD.

Operation: rD <- rA + exts(I)
SR[CY] <- Carry
SR[OV] <- Overflow

Exceptions: None

l.addic – Add Immediate with Carry

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

101000 ddddd aaaaa iiiii i ii iiii iiii

Format: l.addic rD, rA, I

Description: The contents of the general-purpose registers rA, the sign-extended im-
mediate value I, and the carry flag are added. The result is placed into
rD.

Operation: rD <- rA + exts(I) + SR[CY]
SR[CY] <- Carry
SR[OV] <- Overflow

Exceptions: None

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 16

CHAPTER 3. INSTRUCTION SET REFERENCE

l.andi – Logical AND with Immediate Half Word

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

101001 ddddd aaaaa iiiii i ii iiii iiii

Format: l.andi rD, rA, I

Description: A bit-wise logical AND operation is performed on the contents of the
general-purpose registers rA and the zero-extended immediate value I.
The result is placed into rD.

Operation: rD <- rA and extz(I)

Exceptions: None

l.ori – Logical OR with Immediate Half Word

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

101010 ddddd aaaaa iiiii i ii iiii iiii

Format: l.ori rD, rA, I

Description: A bit-wise logical OR operation is performed on the contents of the
general-purpose registers rA and the zero-extended immediate value I.
The result is placed into rD.

Operation: rD <- rA or extz(I)

Exceptions: None

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 17

CHAPTER 3. INSTRUCTION SET REFERENCE

l.xori – Logical XOR with Immediate Half Word

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

101011 ddddd aaaaa iiiii i ii iiii iiii

Format: l.xori rD, rA, I

Description: A bit-wise logical XOR operation is performed on the contents of the
general-purpose registers rA and the sign-extended immediate value I.
The result is placed into rD.
Note: In the OR1200 implementation, the immediate value is zero-
extended, whereas ParaNut sticks to the original OR1k specification. This
allows a 32-bit NOT operation to be implemented as l.xori rA, rB, -1.

Operation: rD <- rA xor exts(I)

Exceptions: None

l.muli – Multiply Immediate Signed

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

101100 ddddd aaaaa iiiii i ii iiii iiii

Format: l.muli rD, rA, I

Description: The contents of the register rA and the immediate value I are multiplied.
The result is truncated to 32 bit and placed into register rD. Both operands
are treated as signed integers.
None (Note: In contrast to the OR1k specification, the flags CY and OV
are not affected, and no range exception can be generated.

Operation: rD <- rA * exts(I)

Exceptions: None (OR1k: Range Exception)

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 18

CHAPTER 3. INSTRUCTION SET REFERENCE

l.sfeqi – Set Flag if Equal Immediate

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

101111 00000 aaaaa iiiii i ii iiii iiii

Format: l.sfeqi rA, I

Description: The contents of the register rA and the immediate value I are compared.
The flag SR[F] is set, if they are equal, and unset otherwise.

Operation: SR[F] <- (rA == I)

Exceptions: None

l.sfnei – Set Flag if Not Equal Immediate

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

101111 00001 aaaaa iiiii i ii iiii iiii

Format: l.sfnei rA, I

Description: The contents of the register rA and the immediate value I are compared.
The flag SR[F] is set, if they are different, and unset otherwise.

Operation: SR[F] <- (rA != I)

Exceptions: None

l.sfgtui – Set Flag if Greater Than Unsigned Immediate

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

101111 00010 aaaaa iiiii i ii iiii iiii

Format: l.sfgtui rA, I

Description: The contents of the register rA and the immediate value I are interpreted
as unsigned numbers and compared. The flag SR[F] is set, if rA > I, and
unset otherwise.

Operation: SR[F] <- (rA > I)

Exceptions: None

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 19

CHAPTER 3. INSTRUCTION SET REFERENCE

l.sfgeui – Set Flag if Greater or Equal Unsigned Immediate

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

101111 00011 aaaaa iiiii i ii iiii iiii

Format: l.sfgeui rA, I

Description: The contents of the register rA and the immediate value I are interpreted
as unsigned numbers and compared. The flag SR[F] is set, if rA >= I,
and unset otherwise.

Operation: SR[F] <- (rA >= I)

Exceptions: None

l.sfltui – Set Flag Less Than Unsigned Immediate

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

101111 00100 aaaaa iiiii i ii iiii iiii

Format: l.sfltui rA, I

Description: The contents of the register rA and the immediate value I are interpreted
as unsigned numbers and compared. The flag SR[F] is set, if rA < I, and
unset otherwise.

Operation: SR[F] <- (rA < I)

Exceptions: None

l.sfleui – Set Flag if Less or Equal Unsigned Immediate

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

101111 00101 aaaaa iiiii i ii iiii iiii

Format: l.sfleui rA, I

Description: The contents of the register rA and the immediate value I are interpreted
as unsigned numbers and compared. The flag SR[F] is set, if rA <= I,
and unset otherwise.

Operation: SR[F] <- (rA <= I)

Exceptions: None

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 20

CHAPTER 3. INSTRUCTION SET REFERENCE

l.sfgtsi – Set Flag if Greater Than Signed Immediate

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

101111 01010 aaaaa iiiii i ii iiii iiii

Format: l.sfgtsi rA, I

Description: The contents of the register rA and the immediate value I are interpreted
as signed numbers and compared. The flag SR[F] is set, if rA > I, and
unset otherwise.

Operation: SR[F] <- (rA > I)

Exceptions: None

l.sfgesi – Set Flag if Greater or Equal Signed Immediate

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

101111 01011 aaaaa iiiii i ii iiii iiii

Format: l.sfgesi rA, I

Description: The contents of the register rA and the immediate value I are interpreted
as signed numbers and compared. The flag SR[F] is set, if rA >= I, and
unset otherwise.

Operation: SR[F] <- (rA >= I)

Exceptions: None

l.sfltsi – Set Flag Less Than Signed Immediate

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

101111 01100 aaaaa iiiii i ii iiii iiii

Format: l.sfltsi rA, I

Description: The contents of the register rA and the immediate value I are interpreted
as signed numbers and compared. The flag SR[F] is set, if rA < I, and
unset otherwise.

Operation: SR[F] <- (rA < I)

Exceptions: None

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 21

CHAPTER 3. INSTRUCTION SET REFERENCE

l.sflesi – Set Flag if Less or Equal Signed Immediate

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

101111 01101 aaaaa iiiii i ii iiii iiii

Format: l.sflesi rA, I

Description: The contents of the register rA and the immediate value I are interpreted
as signed numbers and compared. The flag SR[F] is set, if rA <= I, and
unset otherwise.

Operation: SR[F] <- (rA <= I)

Exceptions: None

l.movhi – Move Immediate High

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

000110 ddddd ----0 iiiii i ii iiii iiii

Format: l.movhi rD, I

Description: The immediate value I is placed into the high-order 16 bits of register rD.
The low-order bits of rD are cleared.

Operation: rD[31:16] <- I
rD[15:0] <- 0

Exceptions: None

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 22

CHAPTER 3. INSTRUCTION SET REFERENCE

3.1.2. Load & Store Instructions
l.lwz – Load Word and Extend with Zero

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

100001 ddddd aaaaa iiiii i ii iiii iiii

Format: l.lwz rD, I(rA)

Description: A word is loaded from memory and placed into register rD. The effective
address is determined by adding the contents of rA to the sign-extended
immediate value I.
Note: For ParaNut , the instructions l.lwz and l.lws are equivalent.

Operation: rD <- Mem (rA + exts(I)) [31:0]

Exceptions: Alignment
TLB miss
Page fault
Bus error

l.lws – Load Word and Extend with Sign

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

100010 ddddd aaaaa iiiii i ii iiii iiii

Format: l.lws rD, I(rA)

Description: A word is loaded from memory and placed into register rD. The effective
address is determined by adding the contents of rA to the sign-extended
immediate value I.
Note: For ParaNut , the instructions l.lwz and l.lws are equivalent.

Operation: rD <- Mem (rA + exts(I)) [31:0]

Exceptions: Alignment
TLB miss
Page fault
Bus error

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 23

CHAPTER 3. INSTRUCTION SET REFERENCE

l.lbz – Load Byte and Extend with Zero

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

100011 ddddd aaaaa iiiii i ii iiii iiii

Format: l.lbz rD, I(rA)

Description: A single byte is loaded from memory, zero-extended, and then placed into
register rD. The effective address is determined by adding the contents of
rA to the sign-extended immediate value I.

Operation: rD <- extz (Mem (rA + exts(I)) [7:0])

Exceptions: TLB miss
Page fault
Bus error

Exceptions: None

l.lbs – Load Byte and Extend with Sign

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

100100 ddddd aaaaa iiiii i ii iiii iiii

Format: l.lbs rD, I(rA)

Description: A single byte is loaded from memory, sign-extended, and then placed into
register rD. The effective address is determined by adding the contents of
rA to the sign-extended immediate value I.

Operation: rD <- exts (Mem (rA + exts(I)) [7:0])

Exceptions: TLB miss
Page fault
Bus error

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 24

CHAPTER 3. INSTRUCTION SET REFERENCE

l.lhz – Load Half Word and Extend with Zero

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

100101 ddddd aaaaa iiiii i ii iiii iiii

Format: l.lhz rD, I(rA)

Description: A half word is loaded from memory, zero-extended, and then placed into
register rD. The effective address is determined by adding the contents of
rA to the sign-extended immediate value I.

Operation: rD <- extz (Mem (rA + exts(I)) [15:0])

Exceptions: Alignment
TLB miss
Page fault
Bus error

l.lhs – Load Half Word and Extend with Sign

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

100110 ddddd aaaaa iiiii i ii iiii iiii

Format: l.lhs rD, I(rA)

Description: A half word is loaded from memory, sign-extended, and then placed into
register rD. The effective address is determined by adding the contents of
rA to the sign-extended immediate value I.

Operation: rD <- exts (Mem (rA + exts(I)) [15:0])

Exceptions: Alignment
TLB miss
Page fault
Bus error

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 25

CHAPTER 3. INSTRUCTION SET REFERENCE

l.sw – Store Word

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

110101 iiiii aaaaa bbbbb i ii iiii iiii

Format: l.sw I(rA), rB

Description: The contents of register rB are stored as a word. The effective address is
determined by adding the contents of rA to the sign-extended immediate
value I.

Operation: Mem (rA + exts(I)) <- rB

Exceptions: Alignment
TLB miss
Page fault
Bus error

l.sb – Store Byte

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

110110 iiiii aaaaa bbbbb i ii iiii iiii

Format: l.sb I(rA), rB

Description: The low-order bits of register rB are stored as a byte. The effective address
is determined by adding the contents of rA to the sign-extended immediate
value I.

Operation: Mem (rA + exts(I)) <- rB[7:0]

Exceptions: TLB miss
Page fault
Bus error

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 26

CHAPTER 3. INSTRUCTION SET REFERENCE

l.sw – Store Half Word

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

110111 iiiii aaaaa bbbbb i ii iiii iiii

Format: l.sh I(rA), rB

Description: The low-order bits of register rB are stored as a half word. The effective
address is determined by adding the contents of rA to the sign-extended
immediate value I.

Operation: Mem (rA + exts(I)) <- rB[15:0]

Exceptions: Alignment
TLB miss
Page fault
Bus error

3.1.3. Control Flow Instructions
l.j – Jump

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

000000 nnnnn nnnnn nnnnn n nn nnnn nnnn

Format: l.j N

Description: The instruction jumps unconditionally with a delay of one instruction.
The target address is determined by adding an immediate constant offset
to the current PC, which refers the address of the jump instruction. The
immediate offset is determined by multiplying the sign-extended 26-bit
immediate value I by 4.

Operation: PC <- PC + 4 * exts(N)

Exceptions: None

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 27

CHAPTER 3. INSTRUCTION SET REFERENCE

l.jal – Jump and Link

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

000001 nnnnn nnnnn nnnnn n nn nnnn nnnn

Format: l.jal N

Description: The instruction jumps unconditionally with a delay of one instruction,
and the address of the instruction after the delay slot is placed into the
link register. The target address is determined by adding an immediate
constant offset to the current PC, which refers the address of the jump
instruction. The immediate offset is determined by multiplying the sign-
extended 26-bit immediate value I by 4.

Operation: LR <- PC + 8
R9 <- PC + 4 * exts(N)

Exceptions: None

l.bnf – Branch if No Flag

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

000011 nnnnn nnnnn nnnnn n nn nnnn nnnn

Format: l.bnf N

Description: If the flag SR[F] is not set, the instruction jumps with a delay of one
instruction. The target address is determined by adding an immediate
constant offset to the current PC, which refers the address of the jump
instruction. The immediate offset is determined by multiplying the sign-
extended 26-bit immediate value I by 4.

Operation: if (SR[F] == 0) PC <- PC + 4 * exts(N)

Exceptions: None

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 28

CHAPTER 3. INSTRUCTION SET REFERENCE

l.bnf – Branch if Flag

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

000100 nnnnn nnnnn nnnnn n nn nnnn nnnn

Format: l.bf N

Description: If the flag SR[F] is set, the instruction jumps with a delay of one instruc-
tion. The target address is determined by adding an immediate constant
offset to the current PC, which refers the address of the jump instruction.
The immediate offset is determined by multiplying the sign-extended 26-
bit immediate value I by 4.

Operation: if (SR[F] == 1) PC <- PC + 4 * exts(N)

Exceptions: None

l.nop – No Operation

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

000101 01--- ----- kkkkk k kk kkkk kkkk

Format: l.nop K

Description: In general, the instruction does nothing. However, the OR1K simulator,
certain values for K may trigger special actions.
The instruction l.nop 1 is handled as a HALT instruction. [[TBD: Define
own HALT?]]
Note: Different from the OR1k specification, the execution time may also
be zero.

Operation: (None)

Exceptions: None

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 29

CHAPTER 3. INSTRUCTION SET REFERENCE

l.jr – Jump Register

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

010001 ----- ----- bbbbb - -- ---- ----

Format: l.jr rB

Description: The instruction jumps unconditionally with a delay of one instruction.
The contents of general-purpose register rB are used as the target address.

Operation: PC <- rB

Exceptions: None

l.jalr – Jump and Link Register

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

010010 ----- ----- bbbbb - -- ---- ----

Format: l.jalr rB

Description: The instruction jumps unconditionally with a delay of one instruction,
and the address of the instruction after the delay slot is placed into the
link register. The contents of general-purpose register rB are used as the
target address.

Operation: R9 <- PC + 8
PC <- rB

Exceptions: None

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 30

CHAPTER 3. INSTRUCTION SET REFERENCE

l.sys – System Call

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

001000 00000 00000 kkkkk k kk kkkk kkkk

Format: l.sys K

Description: Execution of this instruction results in the system call exception. The
system calls exception is a request to the operating system to provide
operating system services. The immediate value can be used to specify
which system service is requested, alternatively a GPR defined by the ABI
can be used to specify system service.

Operation: EPCR <- NPC
ESR <- SR
PC <- 0xc00

Exceptions: System call

l.rfe – Return from Exception

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

001001 ----- ----- ----- - -- ---- ----

Format: l.rfe

Description: Execution of this instruction partially restores the state of the processor
prior to the exception. This instruction does not have a delay slot.

Operation: PC <- EPCR
SR <- ESR

Exceptions: None

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 31

CHAPTER 3. INSTRUCTION SET REFERENCE

3.1.4. Special Instructions
l.mfspr – Move from Special Purpose Register

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

101101 ddddd aaaaa kkkkk k kk kkkk kkkk

Format: l.mfspr rD, rA, K

Description: The contents of the special register, defined by contents of register rA
logically ORed with the immediate value, are moved into register rD.

Operation: rD <- SR(rA or K)

Exceptions: None

l.mfspr – Move to Special Purpose Register

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

110000 kkkkk aaaaa bbbbb k kk kkkk kkkk

Format: l.mtspr rA, rB, K

Description: The contents of the general-purpose register rB are moved into the spe-
cial register defined by contents of register rA logically ORed with the
immediate value.

Operation: SR(rA or K) <- rD

Exceptions: None

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 32

CHAPTER 3. INSTRUCTION SET REFERENCE

3.1.5. ParaNut Extensions
p.cinvalidate – Invalidate cache line

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111110 iiiii aaaaa ---01 i ii iiii iiii

Format: p.cinvalidate I(rA)

Description: The contents of rA are added to the sign-extended immediate value I to
obtain an effective address. If the memory block containing this address is
stored in the cache, it is removed from the cache. An eventually modified
cache block is not written back.

Exceptions: TLB miss
Page fault
Bus error

p.cwriteback – Write back cache line

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111110 iiiii aaaaa ---10 i ii iiii iiii

Format: p.cwriteback I(rA)

Description: The contents of rA are added to the sign-extended immediate value I to
obtain an effective address. If the memory block containing this address
is stored in the cache and modified, it is written back to main memory.

Exceptions: TLB miss
Page fault
Bus error

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 33

CHAPTER 3. INSTRUCTION SET REFERENCE

p.cflush – Flush cache line

Code:
31 26 25 21 20 16 15 11 10 9 8 7 4 3 0

111110 iiiii aaaaa ---11 i ii iiii iiii

Format: p.cflush I(rA)

Description: The contents of rA are added to the sign-extended immediate value I to
obtain an effective address. If the memory block containing this address
is stored in the cache, it is written back to main memory (if modified) and
then removed from the cache.

Exceptions: TLB miss
Page fault
Bus error

3.2. Special-Purpose Registers
The special-purpose reregisters as supported by the ParaNut architecture are listed in
Table 3.1. Shifting the group number GRP 11 bits left and adding the register number
REG computes the address of each special-purpose register. All registers are 32 bits wide
from software perspective. The columns CePU and CoPU specify the valid access types
for each register in a CePU and a CoPU (modes 1 and 2), respectively. “R” stands for
read access and “W” stands for write access. CoPUs supporting mode 3 implement the
same registers as CePUs.
Presently, a protected user mode is not defined. Illegal accesses according to the ta-

bles do not generate exceptions. They are either ignored (write accesses) or may return
senseless data (read accesses).
Different from OR1200, ParaNut does not implement the cache writeback/invali-

date/flush registers. Instead, to allow a smaller hardware implementation, the new in-
structions p.cwriteback, p.cinvalidate, and p.cflush implement the same functionality in
the group of load/store operations (see Section 3.1).
Group 24 contains the ParaNut registers, which are used to query the hardware config-

uration and to set and query the status of the CPU array:

PNCPUS Number of CPUs (including the CePU).

PNM2CAP Each bit corresponds to one CPU. If the bit is set, the respective CPU sup-
ports Mode 2 (thread mode) or higher. If unset, the respective CPU supports
only Mode 0 (halt) and Mode 1 (linked).

PNCE Each bit corresponds to one CPU. Bit 0 represents the CePU and cannot be
set to 0. By writing into this register, the CePU can activate or deactive
CoPUs. By reading the register, the CePU can determine whether the CoPU
is actually (in)active. Both activation and deactivation may take some time
until the CoPU moves into a stable state.

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 34

CHAPTER 3. INSTRUCTION SET REFERENCE

GRP REG Name CePU CoPU Description

0 0 VR R – Version register
0 1 UPR R – Unit Present register
0 2 CPUCFGR R – CPU Configuration register
0 3 DMMUCFGR R – Data MMU Configuration

register
0 4 IMMUCFGR R – Instruction MMU Configuration

register
0 5 DCCFGR R – Data Cache Configuration

register
0 6 ICCFGR R – Instruction Cache Configuration

register
0 7 DCFGR R – Debug Configuration register
0 8 PCCFGR R – Performance Counters

Configuration register
0 16 PC R – PC mapped to SPR space

(Note: According to the OR1k
specification, NPC should go
here! The OR1200 uses PC.)

0 17 SR RW RW Supervision Register
0 18 PPC R – PPC (Previous PC) mapped to

SPR space
0 19 FPCSR R – FP Control/Status Register
0 32..47 EPCR0..EPCR15 R – Exception PC Registers

(all mapped to a single register)
0 48..63 EEAR0-EEAR15 R – Exception EA Registers

(all mapped to a single register)
0 64..79 ESR0-ESR15 R – Exception SR Registers

(all mapped to a single register)
0 1024..1055 GPR0..GPR31 RW – GPRs mapped to SPR space

3 0 DCCR R – (Data) Cache Control Register
3 2 DCBFR – – DC Block Flush Register
3 3 DCBIR – – DC Block Invalidate Register
3 4 DCBWR – – DC Block Write-back Register

4 (all registers are mapped to the corresponding registers of group 3)

24 0 PNCPUS R – ParaNut : Number of CPUs
24 32 PNM2CAP R – ParaNut : Mode-2 Capability

Mask
24 64 PNCE RW – ParaNut : CPU Enable
24 96 PNLM RW – ParaNut : Linked Mode
24 128 PNX R – ParaNut : Exception triggered
24 1024..2047 PNXID0..PNXID1023 R – ParaNut : Exception ID

Table 3.1.: Special-Purpose Registers

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 35

CHAPTER 3. INSTRUCTION SET REFERENCE

PNLM Each bit corresponds to one CPU. If the bit is set for CoPU, the CoPU is in
linked state (Mode 1). If the bit is unset, it is in unlinked state (Mode 2 or 3).
By writing into this register, the CePU can switch the mode of the CoPUs.
Mode switching is allowed only if the CoPU is inactive and not presently
activated. If a bit is changed in the PNLM register and the respective PNCE
bit is 1, undefined behavior may result.

PNX Each bit corresponds to one CPU. If set, an exception condition has occured.
The bits are reset automatical when the register is read.

PNXIDn The exception ID of CPU #n. ([[TBD: PNXID0 may be undefined]])

3.2.1. Supervision Register (SR)
The fields of the Supervision Register (SR) are listed in Table 3.2.

3.2.2. Version Register (VR)
The Version Register (VR) can be read to determine the core version according to the
OpenRISC specification. The fields of the register are listed in Table 3.3. The configura-
tion field is presently not used. The ParaNut -specific configuration, such as the number
of CePUs and their supported modes, can be determined through the ParaNut -specific
registers.

3.2.3. Unit Present Register (UPR)
The fields of the Unit Present Register (UPR) are listed in Table 3.4.

3.2.4. CPU Configuration Register (CPUCFGR)
The fields of the CPU Configuration Register (CPUCFGR) are listed in Table 3.5. The
ParaNut can be configured to have either 16 or 32 general purpose registers per CPU. If
CGF=1, the number of registers is exactly 16 (this is different from the OR1k specification,
which just states that the number of registers is less than 32).

3.2.5. Data Cache Configuration Register (DCCFGR)
The fields of the Data Cache Configuration Register (DCCFGR) are listed in Table 3.5.
Since the ParaNut has a unified cache for data and instructions, the Instruction Cache
Configuration Registers (ICCFGR) as specified by the OR1k architecture is mapped to
the DCCFGR.

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 36

CHAPTER 3. INSTRUCTION SET REFERENCE

Bit(s) Name CePU CoPU Reset Value Description

0 SM R – 1 Supervisor Mode
1 TEE R – 0 Tick Timer Exception Enabled

(Note: This bit cannot be set, a tick timer
interrupt is not supported)

2 IEE RW – 0 Interrupt Exception Enabled
3 DCE RW – 0 Data Cache Enable
4 ICE RW – 0 Instruction Cache Enable

Note: This bit is mapped to DCE. To
activate the common cache, both DCE and

ICE have to be set.
5 DME R – 0 Data MMU Enable
6 IME R – 0 Instruction MMU Enable
7 LEE R – 0 Little Endian Enable
8 CE R – 0 CID and shadow register enable
9 F RW RW 0 Flag (for conditional branches)
10 CY RW RW 0 Carry flag
11 OV RW RW 0 Overflow flag
12 OVE R – 0 Overflow Exception Enable
13 DSX R – – Delay Slot Exception

0: EPCR points to instruction outside a
delay slot

1: EPCR points to instruction in a delay slot
14 EPH R – 0 Exception Prefix High

0: Exceptions vectors are located in memory
area starting at 0x0

1: Exception vectors are located in memory
area starting at 0xF0000000

15 FO R R 1 Fixed One (this bit is alway set)
16 SUMRA R – 0 SPRs User Mode Read Access

0: All SPRs are inaccessible in user mode
1: Certain SPRs can be read in user mode

31:28 CID R – 0 Context ID (optional)

Table 3.2.: Supervision Register (SR)

Bit(s) Name Mode Value Description

0 UP R 0x1f Version (0x1f = ParaNut)
23:16 CFG R 0 Configuration (reserved for future use)
15:6 – R 0 (reserved)
5:0 REV R 0..63 Revision

Table 3.3.: Version Register (VR)

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 37

CHAPTER 3. INSTRUCTION SET REFERENCE

Bit(s) Name Mode Reset value Description

0 UP R 1 UPR Present
1 DCP R 1 Data Cache Present
2 ICP R 1 Instruction Cache Present
3 DMP R 0 Data MMU Present
4 IMP R 0 Instruction MMU Present
5 MP R 0 MAC Present
6 DUP R 0..1 Debug Unit Present
7 PCUP R 0 Performance Counters Unit Present
8 PMP R 0..1 Power Management Present
9 PICP R 0..1 Programmable Interrupt Controller Present
10 TTP R 0..1 Tick Timer Present

31:24 CUP R 0 Custom Units Present

Table 3.4.: Unit Present Register (UPR)

Bit(s) Name Mode Value Description

3:0 NSGF R 0 Number of Shadow GPR Files
4 CGF R 0..1 Custom GPR File

0: GPR file has 32 registers
1: GPR file has 16 registers

5 OB32S R 1 ORBIS32 Supported
6 OB64S R 0 ORBIS64 Supported
7 OF32S R 0 ORFPX32 Supported
8 OF64S R 0 ORFP64P Supported
9 OV64S R 0 ORVDX64 Supported

Table 3.5.: CPU Configuration Register (CPUCFGR)

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 38

CHAPTER 3. INSTRUCTION SET REFERENCE

Bit(s) Name Mode Value Description

2:0 NCW R 0..2 Number of Cache Ways
0: Cache is direct-mapped (one-way)

1. Cache is 2-way set-associative
2: Cache is 4-way set-associative

6:3 NCS R 0..15 Number of Cache Sets (cache blocks
per way)

0: Cache has one set
15: Cache has 215 = 32768 sets

7 BS R 0..1 Cache Block Size
0: Cache block has 16 or fewer bytes

(OR1k: exactly 16)
1: Cache block has 32 or more bytes

(OR1k: exactly 32)
8 CWS R 1 Cache Write Strategy

0: Write-through
1: Write-back

9 CCRI R 0 Cache Control Register Implemented
10 CBIRI R 0 Cache Block Invalidate Register

Implemented
11 CBPRI R 0 Cache Block Prefetch Register

Implemented
12 CBLRI R 0 Cache Block Lock Register

Implemented
13 CBFRI R 0 Cache Block Flush Register

Implemented
14 CBWBRI R 0 Cache Block Write-Back Register

Implemented

Table 3.6.: Data Cache Configuration Register (DCCFGR)

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 39

CHAPTER 3. INSTRUCTION SET REFERENCE

3.3. Exceptions
Table 3.7 lists the exceptions supported by the ParaNut architecture. Exceptions labelled
“(optional)” may not be supported by a particular implementation. The column CoPU
indicates whether the exception can occure inside a CoPU. The ParaNut does not support
fast context switching. Hence, only one set of exception registers (EPCR, EEAR, ESR)
exits.
If an exception occurs in the CePU, the following steps are performed:

1. The return address is stored in register EPCR. If an instruction causes an exeption,
it has either completed (e. g. in the case of a system call) or can be restarted (e. g.
in the case of a page fault). Depending on this, either the address of the instruction,
or its successor are stored. Special care has to be taken in the following cases:

• If the exception is caused by an instruction in a delay slot, either the branch
target address (completed instruction) or the address of the branch instruction
(restartable instruction) is stored in EPCR.
• In the case of an “Illegal Instruction” exception, the address of the offending

instruction is placed into EEAR, and EPCR points to the next instruction to
be executed.

2. In the case of a page fault, the effective address is stored in EEAR.

3. The current SR is stored in ESR.

4. Interrupts are disabled: SR[IEE] = 0.

5. All CoPUs change into the “halt” mode (PNME = 1, only the CePU remains active),
and the CePU waits until they actually stop.

6. Excecution is continued at the address given by the exception ID multiplied by
0x100.

If an exception occurs inside a CoPU, the following steps occur:

1. If any of the CoPUs is in linked mode (Mode 1), all Mode-1-CoPUs and the CePU
must be designed such that they either all complete their current instruction or all
of them abort it. If this is not ensured, the interrupted code is not restartable.
[[TBD: Instead of “abort” we may also specify: are restartable. This is easier to
implement, e. g. loads which may for some CoPUs cause a page fault and for the
other would then be executed twice without harm.]]

2. Inside the CoPU, the registers EPCR (not necessary for mode 1), EEAR and ESR
are set as described above.

3. The exception ID is placed into the PN Exception ID register (PNXIDn).

4. The ParaNut Mode Enable register PNME is saved in EPNME.

5. All CoPUs change into the “halt” mode (PNME = 1, only the CePU remains active),
and the CePU waits until they actually stop.

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 40

CHAPTER 3. INSTRUCTION SET REFERENCE

6. A CoPU exception is triggered for the CePU.

The exception handler ends by restoring the state of the PNME register and executing
the l.rfe instruction. This former instruction lets all CPUs start from the CePU’s current
PC position. Now, they all concurrently execute l.rfe and return to the place where they
were interrupted.

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 41

CHAPTER 3. INSTRUCTION SET REFERENCE

Name ID CoPU Restartable Description

Reset 0x1 – – Caused by hardware reset.
Bus Error 0x2

√ √
The causes are implementation-specific, but
typically they are related to bus errors and
attempts to access invalid physical address.

Note: This exception is never asserted in the
present version of ParaNut .

Data Page Fault 0x3
√ √

(optional, requires MMU)
No matching page table entry found or page
protection violation for load/store operations

Instruction Page Fault 0x4
√ √

(optional, requires MMU)
No matching page table entry found or page
protection violation for instruction fetch

operations
Tick Timer 0x5 –

√
(optional) Tick timer interrupt asserted.
(OR1200: Low priority external interrupt)

Alignment 0x6
√

– Load/store access to naturally not aligned
location.

Illegal Instruction 0x7
√ √

Illegal instruction in the instruction stream.
External Interrupt 0x8 –

√
External interrupt asserted. (OR1200: High

priority external interrupt)
D-TLB Miss 0x9

√ √
(optional, requires MMU)

No matching entry in DTLB (DTLB miss).
I-TLB Miss 0xA

√ √
(optional, requires MMU)

No matching entry in ITLB (ITLB miss).
Range 0xB

√
– (optional) Asserted, if

a) an Overflow occured and SR[OVE] was
set, or

b) a non-existing general-purpose register has
been accessed, if less than 32 GPRs exist.

System Call 0xC –
√

System call initiated by software.
Trap 0xE

√ √
(optional) Caused by the l.trap instruction or

by debug unit.
CoPU 0xF – (sometimes) An exception occured inside a CoPU.

Table 3.7.: Supported Exceptions

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 42

Bibliography
[1] Gundolf Kiefer, Michael Seider, and Michael Schaeferling: “ParaNut – An Open,

Scalable, and Highly Parallel Processor Architecture for FPGA-based Systems”, Pro-
ceedings of the embedded world Conference, Nuernberg, Feb. 24-26, 2015

[2] opencores.org: “OpenRISC 1000 Architecture Manual”, 2014, www.opencores.org

[3] John. L. Hennessy, David A. Patterson: “Computer Architecture: A Quantitative
Approach”, 5th edition, Elsevier, 2012

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 43

Index

L
l.add, 7
l.addc, 8
l.addi, 16
l.addic, 16
l.and, 9
l.andi, 17
l.bnf, 28, 29
l.cmov, 11
l.j, 27
l.jal, 28
l.jalr, 30
l.jr, 30
l.lbs, 24
l.lbz, 24
l.lhs, 25
l.lhz, 25
l.lws, 23
l.lwz, 23
l.mfspr, 32
l.movhi, 22
l.mul, 12
l.muli, 18
l.mulu, 12
l.nop, 29
l.or, 9
l.ori, 17
l.rfe, 31
l.sb, 26
l.sfeq, 13
l.sfeqi, 19
l.sfges, 15
l.sfgesi, 21
l.sfgeu, 14
l.sfgeui, 20
l.sfgts, 15
l.sfgtsi, 21
l.sfgtu, 13
l.sfgtui, 19

l.sfles, 16
l.sflesi, 22
l.sfleu, 14
l.sfleui, 20
l.sflts, 15
l.sfltsi, 21
l.sfltu, 14
l.sfltui, 20
l.sfne, 13
l.sfnei, 19
l.sll, 10
l.sra, 11
l.srl, 10
l.sub, 8
l.sw, 26, 27
l.sys, 31
l.xor, 9
l.xori, 18

P
p.cflush, 34
p.cinvalidate, 33
p.cwriteback, 33

The ParaNut Processor, Gundolf Kiefer, February 27, 2015 44

	Contents
	1 Introduction
	2 The ParaNut Architecture
	2.1 Instruction Set Architecture
	2.2 Structural Organisation
	2.3 Execution Modes and Capabilities
	2.4 SIMD Vectorization
	2.5 Multi-Threading

	3 Instruction Set Reference
	3.1 Instructions
	3.1.1 ALU Instructions
	3.1.2 Load & Store Instructions
	3.1.3 Control Flow Instructions
	3.1.4 Special Instructions
	3.1.5 ParaNut Extensions

	3.2 Special-Purpose Registers
	3.2.1 Supervision Register (SR)
	3.2.2 Version Register (VR)
	3.2.3 Unit Present Register (UPR)
	3.2.4 CPU Configuration Register (CPUCFGR)
	3.2.5 Data Cache Configuration Register (DCCFGR)

	3.3 Exceptions

	Bibliography
	Index

