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Kurzfassung
In dieser Arbeit wird die Implementierung eines ParaNut-Prozessors vorgestellt. Dieser basiert
auf der ParaNut-Architektur, einer offenen, skalierbaren Mehrkern-Prozessorarchitektur. Ziel
der Arbeit ist dabei eine funktionsfähige VHDL Implementierung zum Einsatz auf einem FPGA.
Der Prozessor wird zunächst auf Grundlage einer taktgenauen SystemC-Referenzimplementierung
entwickelt. Anschließend wird der Prozessor in das OpenRISC Reference Platform System-
on-Chip (ORPSoC) integriert und auf einer FPGA Hardware-Plattform realisiert. Nach Val-
idierung der korrekten Funktion der ParaNut-Implementierung werden verschiedene Experi-
mente auf der Hardwareplattform ausgeführt, welche die Leistungsfähigkeit der Architektur
bestimmen sollen. Die Performance-Evaluation umfasst dabei neben der reinen Ausführungs-
geschwindigkeit von Benchmarkprogrammen auch eine genaue Untersuchung der Performanz
interner Komponenten der ParaNut-Architektur. Schließlich wird auch die korrekte Funktion
und Leistungsfähigkeit des Prozessors mit mehreren Prozessor-Kernen bestimmt. Abschließend
wird die Implementierung noch hinsichtlich Ressourcenverbrauch und maximaler Frequenz für
den eingesetzten FPGA untersucht, wobei Vorschläge für mögliche Optimierungen genannt wer-
den.
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Abstract
This work presents the implementation of a ParaNut processor. It is based on the ParaNut
architecture, an open, scalable multi-core processor architecture. The aim of this work is a
functional implementation of a ParaNut processor on an FPGA using VHDL. The processor
is implemented on basis of a cycle accurate SystemC reference implementation. The processor
is then embedded into the OpenRISC Reference Platform System-on-Chip (ORPSoC), which
is synthesized for use on an FPGA platform. After validating the correct functionality of the
ParaNut VHDL implementation, experiments are performed that determine the performance of
the architecture. Performance measurements include running standard benchmark programs as
well as a detailed analysis of the performance of internal components of the ParaNut architec-
ture. Eventually, the correct operation and performance of the processor with multiple cores
is investigated. Lastly, the implementation is examined in terms of resource usage and timing,
whereupon suggestions for possible optimizations are proposed.
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1 Introduction

Since the beginning of modern computing, the demands to the computational power of electrical
computer systems have risen continually. For many years, the constant increase of processor
clock rates ensured this performance goal. However, due to increased power requirements that
arise from scaling transistors and wires in chips, clock rates have not improved as much as in the
years before 2002, when the annual average growth of processor performance declined from 52%
to 20% [1]. Since transistor size decreased and still continues to grow smaller, more complex
logic can be integrated into the chip that is dedicated to increase the number of instructions that
can be executed per clock cycle. For example, out-of-order execution or speculative execution
with branch prediction further increase efficient usage of execution resources in a CPU. These
techniques exploit instruction level parallelism (ILP) by overalapping the execution of multiple
instructions.

However, the general direction of development has led to multi-core processors that integrate
multiple CPU cores in a single chip. Multi-core CPUs can sustain multiple threads of execution
simultaneously, which is referred to as thread level parallelism (TLP). Operating systems can
use this, for example, to schedule multiple tasks to execute simultaneously on different cores.
However, single applications that make use of TLP are more demanding to the programmer
because of issues that arise from accessing shared data from multiple threads. Race conditions
can lead to hard to find bugs in programs. By locking critical sections of code, other problems can
arise like deadlocks or livelocks. A multi-threaded program may even have worse performance
than a single-threaded program because of synchronisation overhead. It may even be difficult
to find sections of code that can be parallelized to begin with.

A third form of parallelization is data level parallelism (DLP). Data is distributed across
several CPUs, all of which execute the same instruction on a separate slice of data simul-
taneously (SIMD). A good example for a situation in a program where data level parallel-
ism could be exploited by SIMD operations are loops, like shown in the following piece of
code.

1 for (i=0; i<16; i++)
2 a[i] = b[i] + c[i];

The loop sequentially takes every of the 16 elements of the arrays b and c, adds them, and stores
the result in a. In a sequential mode of operation, for every iteration, the loop variable has to
be incremented, two operands have to be loaded and added, the result has to be stored, and
a conditional jump has to be made. This amounts to 16*6 = 96 operations for all iterations.
Depending on the instruction set architecture (ISA), even more instructions will have to be
executed. E.g., for an ISA that does not have autoincrement addressing modes, instructions for
incrementing registers for load and store addresses may have to be inserted. A vector operation
could achieve all that with a single instruction. One drawback of vector operations however is
insufficient support through high level programming languages. Instead, specialized code has to
be programmed in assembler language.

While most modern VLSI processor designs for standard computer hardware exploit all of the
three techniques, they are not widely supported in soft-core processors intended to run on FPGA
hardware. While exploiting instruction level parallelism often involves the use of complex logic

1



1 Introduction 2

and therefore is not primarily suited for FPGA applications, multiple simple cores can fit on an
FPGA. Vector operations also tend to be well suited for implementation on FPGAs due to their
highly parallel nature. A project that incorporates both the SIMD concept and parallelism on
thread-level in a scalable design is the ParaNut project. It also tackles the problem of limited
vector operation support in high level languages.

1.1 Requirements Specification

The goal of this work is the design of a functional VHDL implementation of a ParaNut pro-
cessor that can be synthesized for FPGA hardware. The VHDL model should at least support
the functionality of the ParaNut SystemC reference design, with one CPU core. To verify the
correctness of the implementation, programs should be able to execute correctly. While it is
difficult to verify the correct behaviour of the processor for all possible states it can take, it is
sufficient that a set of programs which is later being used to evaluate the implemented Para-
Nut processor executes correctly. For example, correct behaviour can be asserted by examining
output from programs on a terminal which shows that the program executed correctly. This
requires embedding the ParaNut in a system-on-chip (Soc) that provides suitable output cap-
abilities, e.g. a UART for connecting to a serial interface on a host PC. In order to be able
to evaluate the ParaNut processor in terms of performance, a suitable performance measuring
device needs to be implemented. Finally, resource usage and timing are to be examined for the
given FPGA platform.

1.2 Structure of This Work

This work begins with an overview of existing soft-core processor architectures in chapter 2.
While some of them are briefly outlined, the OpenCores project and the OpenRISC 1000 ar-
chitecture, on which the instruction set of the ParaNut is based, are illustrated more clearly.
Chapter 3 moves on to specify the special concept behind the ParaNut architecture. A Sys-
temC implementation of a ParaNut processor is then outlined, as it will serve as a reference
for the ParaNut VHDL implementation that is presented in this work. The core components
of the ParaNut VHDL implementation are explained in chapter 4. A hardware unit that is
developed to evaluate the performance of specific components that are critical to the design of
the ParaNut architecture is introduced. Chapter 5 states the general ideas the VHDL code of
the ParaNut complies to. A central configuration mechanism that enables the ParaNut VHDL
model to be implemented according to different design goals is presented. Multiple aspects of
the ParaNut VHDL implementation are evaluated in chapter 6. After introducing the FPGA
platform and the system-on-chip used for evaluation, a set of benchmarks is run and the results
are compared to an implementation of the OR1000 architecture, the OR1200. In the next step,
different configurations of core components of the ParaNut are evaluated, in order to determine
their influence on overall performance. The benchmarks are also run with multiple cores in
order to verify the correctness of the design and measure performance for an increased work-
load. The chapter ends with an comprehensive examination of resource usage and timing for an
FPGA. Based on the results, suggestions to possible improvements of the ParaNut implementa-
tion are made. Chapter 7 summarizes the results of this thesis. Concluding remarks are given in
chapter 8, where suggestions on the further development of the ParaNut VHDL implementation
are given.



2 Fundamentals

Before having a look at the ParaNut architecture, some of the many existing implementations
of soft-core processors are briefly reviewed in section 2.1. The OpenRISC 1000 architecture,
which defines the instruction set architecture for the ParaNut processor, is then highlighted in
section 2.2.

2.1 State of The Art

This section outlines some of the existing processor architectures in terms of multi-core pro-
cessing support and availability.

MicroBlaze is a soft-core IP processor from Xilinx that is targeted at FPGA platforms [2].
The hardware description for the MicroBlaze is not open source. Xilinx provides the Em-
bedded Development Kit (EDK) which is used to configure and build a complete system-on-
chip with the MicroBlaze. For FPGAs with limited resources, different aspects of the Micro-
Blaze can be configured in order to reduce area consumption, but otherwise decrease perform-
ance.

An example for an instruction set architecture (ISA) that is open and non-proprietary is the
SPARC ISA, which was developed by Sun Microsystems. Several implementations of the SPARC
architecture exist. With the OpenSPARC T1 and OpenSPARC T2, the hardware descriptions
for two implementations of the SPARC ISA were released under open source licenses [3]. While
the OpenSPARC T1 is based on the 32-bit SPARC V8 architecture, the OpenSPARC T2 is
an implementation of the more recent 64-bit SPARC V9 architecture. Although the designs
initially were not ready for use on FPGAs because of high area consumption, an area optimized
design has enabled a variant of the OpenSPARC T1 to be synthesized and fit on a Xilinx
FPGA [4].

Another implementation of the SPARC V8 ISA is the Leon3 processor, developed by Aeroflex
Gaisler [5]. It is part of the GRLIB IP library. The source code is released under the GNU GPL
license and is targeted at implementation on FPGAs. The GRLIB also provides many IP cores
that can be used to create a complete SoC design and an environment for synthesizing the design
for FPGA target devices from different vendors. The Leon3 processor is highly configurable and
can be optimized to application specific needs. The GRLIB also supports creating a Leon3 based
multi-core processor system [6].

The Parallella [7] platform is a multi-core development platform that is built upon a ZYNQ
70x0 system-on-chip which features an ARM A9 dual-core CPU and an integrated FPGA.
The parallella draws its highly parallel capabilities from a special multi-core accelarator chip,
the Epiphany [8], which is developed by Adapteva. While the software development tools
and libraries are based on open source software, the hardware of the Epiphany IP core is not
and is only available integrated into the Parallella platform. The Epiphany architecture is
a scalable multi-core architecture where multiple floating-point RISC CPUs are connected to
a shared-memory over a 2D mesh network that is organized as a matrix. Computations for
array-like data can be split into several tasks, each of them which is then processed by one of

3
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the RISC nodes. A message passing API is provided that can be used to share data among
nodes.

2.2 OpenRISC

OpenCores is a worldwide effort for the development of open source hardware. The project star-
ted back in 1999 and its website [9] is a place for the OpenCores community to develop and share
their projects with one another. At the time of this writing, it hosts a total of over 1100 projects,
with a community of nearly 200.000 users and an increase of 2000 new users last month. As the
name OpenCores implies, most projects are licensed under a copyright license like the GPL or
the less restrictive LGPL or BSD license. This is in line with the idea of building a complex SoC
that may consist of many IP cores, just like a piece of software that uses free libraries. One of
OpenCores’ main contributors, Julius Baxter, has developed a new license, the Open Hardware
Description License [10]. It addresses particular issues that arise when re-using free hardware IP
cores in own designs and that are not covered by existing copyright licenses such as the GPL or
LGPL, and is specifically tailored for hardware description (RTL) source code [11]. Its long term
goal is to both grow interest in open source hardware development as well as making it easier for
companies to re-use open-source IP cores in proprietary designs.

2.2.1 OpenRISC Overview

OpenRISC is the prime example of projects of the OpenCores community. At the heart lies
the OpenRISC 1000 (OR1K) architecture [12] which aims at the development of a highly con-
figurable RISC CPU. It is released under the GNU General Public License. The OpenRISC
1000 architecture is an open architecture which means that every aspect of it is not only pub-
licly available, but also allows for a multitude of implementations with different design goals.
While some basic features of OR1K are mandatory, there are many optional features that let
implementations greatly enhance their capabilities. Or, if, for example, simplicity and low area
consumption are paramount, the design can be reduced to what is absolutely necessary. With
some of the optional features, an OpenRISC compatible processor can be designed that supports
all important features of today’s microprocessors, being able to run full-sized operating systems
such as Linux. The OR1200 processor is an implementation of the OR1K architecture, which is
however not designed to support multiple cores. Section 2.2.2 will highlight some of the details
of the OR1K architecture.

In order to develop a fully functional system-on-chip, a peripheral system surrounding the CPU
is needed. This system is realised in the form of another effort by OpenCores named OpenRISC
Reference Platform System-on-chip (ORPSoC). It is centered around the open source hardware
computer bus Wishbone Bus, interfacing different IP cores with each other, and includes the
OR1200 implementation of the OR1K architecture. The Wishbone bus enables an OR1K based
processor to use peripherals such as controllers for main memory, serial interface, debug inter-
faces, etc. Many of the IP cores found at OpenCores come with a Wishbone bus interface, ready
for use in an ORPSoC project. Some of the basic components of a microprocessor system like a
16550 compatible UART, also part of the OpenCores project, as well as an implementation of
the Wishbone Bus, are already included in the ORPSoC.

On top of providing a compilation of IP cores and interconnect for a complete SoC, ORPSoC
has been ported to a range of FPGA boards. In fact, ORPSoC is intended to make the process
of customising a SoC design and porting it to a new FPGA board as simple as possible. It



2 Fundamentals 5

therefore has facilities for simulating Verilog RTL designs as well as synthesising Verilog and
VHDL source code for different target FPGA technologies.

The OpenRISC GNU tool chain [13] consists of the most important tools for compiling software
from C/C++/Assembler source code as well as examining, modifying, executing, and debugging
resulting binaries.

2.2.2 The OpenRISC 1000 Architecture

OR1K defines a RISC load-store architecture with support for both 32 and 64 bit wide registers
and address space. It therefore generally suits medium to high performance applications and
allows for powerful designs that can run modern operating systems like Linux. The follow-
ing subsections will highlight features defined by the OR1K architecture that are particularly
important to the implementation of the ParaNut processor.

2.2.3 Instruction Set Architecture

The OpenRISC 1000 instruction set architecture is a flexible architecture which consists of
different instruction subsets which are either mandatory or optional. Table 2.1 lists the five
instruction subsets.

Table 2.1: Summary of OR1K instruction subsets
Instruction Subset Instructions featured

ORBIS32 32-bit integer instructions
32-bit load and store instructions
Program flow instructions
Special instructions
Basic DSP instructions

ORBIS64 64-bit integer instructions
64-bit load and store instructions

ORFPX32 Single-precision floating-point instructions
ORFPX64 Double-precision floating-point instructions

64-bit load and store instructions
ORVDX64 Vector instructions

DSP instructions

An OR1K compliant CPU must implement at least the ORBIS32 or ORBIS64 instruction sub-
set. All other instruction subsets are optional. In each subset, there are Class I and Class II
instructions of which instructions of Class I must always be implemented, and those of Class
II are optional. An implementation may choose to implement any of the instructions in Class
II. This allows for great flexibility in the implementation of the CPU. A detailed list of all
instructions can be viewed in the OR1K architecture manual [12].



3 ParaNut

3.1 Overview

The ParaNut is a new project by Gundolf Kiefer from the University of Applied Sciences Augs-
burg. Its architecture is specified in the ParaNut Architecture Description and Reference Manual
which can be obtained from the website of the Efficient Embedded Systems workgroup [14]. De-
signed to be an open and scalable multiprocessor system, the ParaNut instruction set is based
on the OpenRISC 1000 specification. Therefore, compiler support is available from the start
through the OpenRISC GCC tool chain. Since the ParaNut is targeted at FPGA implementa-
tions with different and often limited resource budgets, the ParaNut architecture does not aim
at a complex design that employs techniques such as instruction level parallelism to exploit par-
allelism. Instead, a new concept of SIMD (single instruction, multiple data) vectorization is used
to exploit parallelism in a way that is easy to implement by application programmers: Instead
of having to implement code in assembler for specialized SIMD instructions, SIMD support in
the ParaNut is available by means of programming in a high level language like C. Thread
level parallelism is supported and is not as expensive in terms of logic usage but imposes more
work on the application programmer, since critical code sections need to be properly secured.
This chapter first shows the general architectural concept behind the ParaNut architecture. It
then outlines the ParaNut SystemC model which is the reference implementation for the VHDL
implementation that was designed in this work.

3.2 Hardware Architecture

Figure 3.1 shows an example of the architecture of a ParaNut processor.

A ParaNut processor is made up of at least 1 processor core, the Central processing unit (CePU).
Besides the CePU a ParaNut can have one ore more co-processing units (CoPUs). They can
have the same features as the CePU and all cores will then act as a multi-core CPU. However,
a ParaNut CPU can run in different modes from 0 to 3.

A CePU can only run in mode 3, or set inactive (mode 0). In mode 3, a CePU or CoPU carries
out instructions, handles interrupts and exceptions, and can execute privilieged instructions. In
this example, CoPU 1 runs in mode 2 (Thread), which allows it to execute instructions, but
interrupts and exception handling are disabled as are priviliged instructions. Mode 1 (linked
mode, or vector mode) puts the CoPU under the control of the CePU. This means that it does
not process instructions on its own but executes ALU operations under the control of the CePU.
The registers of the CoPU can be seen as a slice of a vector CPU. This is how the SIMD concept
of the ParaNut architecture is implemented. Mode 0 sets the CoPU inactive and it does not
process instructions nor handle exceptions.

Since the ParaNut architecture is scalable, a CoPU does not have to support all modes up to 3.
E.g., in order to build a highly parallel vector processor that does not need multiple autonomous
CPU cores, CoPUs only have to support a maximum capability of 1. This introduces the
capability of a core and reflects the maximum supported mode the CoPU can run in. A CoPU

6
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Figure 3.1: Architecture of a ParaNut processor (image courtesy of Gundolf Kiefer [15])

then only has to implement the hardware which is need to support its maximum capability. A
CoPU with capability 2 does not need to implement interrupts and exception handling as well
as privileged instructions, and a capability 1 CoPU additionally loses its internal controller and
instruction port.

3.3 SystemC Model

The ParaNut SystemC model, developed by Gundolf Kiefer, is a cycle accurate implementation
of the ParaNut architecture. It serves as the reference implementation for the VHDL model
that has been developed in this work. At present, only CePUs are implemented in the model.
Figure 3.2 shows the general modular structure of the ParaNut SystemC model for n CPU
cores.

All CPUs are connected to the memory unit (MEMU). It has access to main memory via
a Wishbone bus compatible interface and contains a unified instruction/data cache. A CePU
consists of the 3 sub-modules execution unit (EXU), instruction fetch unit (IFU), and load/store
unit (LSU). The IFU implements the instruction port and has a small buffer for instructions.
The LSU implements the data port with a small buffer for store operations. Both IFU and
LSU interface with the MEMU through read ports (RP) and write ports (WP). The IFU only
has to read instructions and therefore only has one read port. The LSU needs to both read
and write data, so it has one read and write port. Every CePU will therefore need two read
ports and one write port. Both IFU and LSU are controlled by the EXU which implements the
ORBIS32 instruction subset as well as all OR1K architecture specific registers and exception
handling.

The SystemC model is verified with a test bench that can execute programs compiled for the
OR1K architecture. The model also has means of profiling execution times for instructions.
Although the SystemC model is a cycle accurate model of a ParaNut processor, not all modules
have been implemented at the register transfer level (RTL). To be able to run the ParaNut
on FPGA hardware, a synthesisable VHDL model has been developed in this work which is
presented in chapter 4.
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Figure 3.2: Modular structure of the ParaNut SystemC model



4 Hardware architecture

This chapter describes the hardware architecture of the ParaNut VHDL implementation that was
developed in this work. It uses the ParaNut SystemC model which is introduced in chapter 3
as a reference design. The VHDL implementation sticks to the reference design as close as
possible, especially where it is implemented at the register transfer level. Overall, the main
components of the SystemC model have been adopted. While the VHDL model was developed,
changes to its architecture have been transferred back to the SystemC model. At the time of this
writing, only cores with the highest capability 3 are supported, which means they contain a full-
featured EXU with instruction and data ports (also see figure 3.2). Thus, every additional core
will generate EXU, IFU, and LSU. This should of course change in the future, where a CoPU
with capability 2 will omit interrupt handling, exception processing, and privileged instructions
and a CoPU with capability 1 will additionally lose its instruction port and all related logic.
The following sections show detailed descriptions of the main modules of the ParaNut VHDL
implementation.

4.1 Instruction Fetch Unit (IFU)

Fetching instructions in the ParaNut is handled by the instruction fetch unit (IFU). This is
mostly done autonomously by the instruction fetch pipeline which consists of a buffer for pro-
gram counter addresses and associated instructions. They are both configurable in the num-
ber of entries. Jumps and requests for new instructions are controlled externally by the EXU
(see section 4.4). Figure 4.1 shows the general structure of the address and instruction buf-
fers.

New addresses are constantly being generated every clock cycle by adding an offset to the last
valid address and storing it in the buffer until the buffer is full. The first 3 of N entries (0..2)
of the buffer represent previous (PPC), current (PC), and next (NPC) program counter values
and are exposed to the EXU. When a jump occurs, the jump target address is loaded from
the EXU into the 2nd entry of the address buffer. The IFU utilizes a read port interface to
the MEMU to fetch instructions for valid addresses from the address buffer. A new address is
therefore selected from the address buffer and stored in a register. Only when there is a jump
instruction in the buffer, fetching new instructions is halted for the address that follows the
jump delay slot (i.e. the jump target address). This is done for two reasons: First, the jump
target address for an unconditional branch may not have been calculated yet. Second, it may
not have been decided yet if a conditional branch is taken or not. In both cases, instructions for
invalid addresses would be fetched which must not happen. Moreover, this prevents unnecessary
memory accesses that could lead to delays for other ports trying to access the MEMU because
of occupied resources. When the EXU requests a new instruction, the contents of the buffers
are shifted by one place and the oldest entry is removed. Since an address is generated every
clock cycle, a read request to the MEMU can be issued in every clock cycle, too, provided that
it is served in the same clock cycle. The MEMU can theoretically do so by reading bursts using
the bus interface.
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Figure 4.1: Block diagram of the address and instruction buffers of the IFU.

4.2 Load Store Unit (LSU)

The LSU serves all read and write requests to memory for the EXU and is designed to decrease
write latency for store instructions. A write buffer that can be configured in the number of entries
is used to this end. Figure 4.2 shows the layout of a buffer entry.

Address (31..0)

Data word (31..0)

Valid (3..0)Byte 1 Byte 2 Byte 3 Byte 4

Figure 4.2: Layout of a write buffer entry of the LSU.

Every entry holds a 32-bit address, 32-bit data word, and a 4-bit valid tag. A valid bit set
to ’1’ indicates that the corresponding byte of the data word in the buffer is to be written to
memory. Every word that is written by the EXU is placed in the buffer first before writing to
memory. This allows for writes to be completed in the same clock cycle as the write request
to the LSU was issued if the buffer is not full. Valid bytes from words that are queued in the
buffer and are to be written to memory must be forwarded to a read operation with the same
address. Otherwise, modified bytes would not be catched and false data could be read. This
can also help in reducing read accesses to the MEMU if a full hit (all of the requested bytes are
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valid) occurs. The block diagram in figure 4.3 shows how the write buffer is embedded into the
LSU.
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Figure 4.3: Block diagram of the LSU.

When writing, the buffer is first searched for a hit. A write hit occurs if an entry with the same
address is already in the buffer and one of its bytes is marked valid. The existing entry will
then be merged with the new write request by updating valid bits and associated bytes in the
data word. An exception to this rule are writes to special addresses, i.e. I/O addresses. If, for
example, a peripheral core needs to be reset by toggling a bit in one of its registers to ’1’ and
back to ’0’ again, the first write (reset bit set to ’1’) could be merged with the second write
(reset bit set to ’0’) and thus ’1’ would never be written. Therefore, write to special addresses
need to wait until the buffer is flushed.

When reading, valid bytes that have a hit in the buffer are being forwarded. If all requested bytes
are valid, the read request can be served completely from the write buffer and be completed in
the same clock cycle that the request was made. Otherwise, the LSU forwards the request to
memory. If there is a partial hit in the store buffer, modified bytes are additionally merged with
the data that was read from memory.

4.3 Memory Unit (MEMU)

The memory unit is the central part for all read and write accesses to the memory hierarchy.
Its general structure is shown in figure 4.4.
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Figure 4.4: Block structure of the memory unit.

The MEMU provides access to the Wishbone bus and features a unified cache for both instruction
and data memory. Read and write ports, which are employed by the IFU and LSU, share
this single cache and the bus interface. As the name suggests, the arbiter module deals with
arbitrating accesses to shared resources, which are the bus interface, tag RAM, and bank RAM.
Read ports and write ports first have to request permission from the arbiter in order to access a
shared resource. If the access is granted, this is signaled to the corresponding port with a grant
signal. The bus interface also deals with reading and writing cache lines during a cache line refill
and therefore has to request access for tag and bank RAM from the arbiter. The arbiter is a
mealy type state machine and can grant access in the same clock cycle as the request was made.
Accesses are granted according to different priorities which are listed in table 4.1, beginning
with the highest priority (0).

Table 4.1: Arbiter priorities
Priority Module

0 bus interface
1 read port (data)
2 read port (instruction)
3 write port (data)

Cache memory is organized in banks with a width of 4 bytes. Every bank can be accessed
individually. Since the number of ports for a single bank is limited, accesses need to be ar-
bitrated. Tag RAM is duplicated for each CPU core which enables CPUs to read tags for
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different addresses in parallel. However, writing to tag RAM is restricted to one access at a
time.

A cached read access by a read port will take at least 2 clock cycles. In the first clock cycle, it will
request access to the tag RAM from the arbiter. If the access is granted in that cycle, the tag can
be read in the next clock cycle. If it is a hit, the read port will request the corresponding bank
from the arbiter and can immediately acknowledge to the LSU or IFU if the access is granted.
Since the access to cache memory is pipelined, data will arrive in the clock cycle after the request
was acknowledged. If there was no hit in the cache, the read port will then request and employ
the bus interface to fetch the data from main memory, which is also done for uncached read
accesses. A read port can also complete a read access in one clock cycle, if it happens to catch
an incoming data word that is transferred from main memory to the cache by the bus interface
(bus interface hit). This is due to the bus interface forwarding read data when reading from
main memory. If a burst access to main memory yields a new data word in every clock cycle,
the IFU can use this to quickly refill its instruction buffer.

A cached write access will start by the same actions as a read access, by determining if the
address to be written is already in the cache, and whether data has to be fetched from main
memory first. However, any writer to the cache needs to have exclusive access to a whole
cache line through means of a line lock mechanism, which is administered by the arbiter. This
mechanism is employed a) by the bus interface when replacing a whole cache line with data from
main memory and b) by a write port when writing to bank RAM. To this end, only one of all
write ports or the bus interface is allowed to modify the same cache line at a time. The line lock
mechanism also prevents conflicting write accesses to tag RAM. These restrictions are necessary
in order to guarantee cache coherency. Non-conflicting accesses to the same cache line are read-
only accesses and accesses to different neighbouring addresses. An address is neighboured if it
has an offset of one word (i.e. 4 bytes) to the previous/next address and therefore addresses
a different bank. It is intended to allow concurrent access to a single cache line by all CPUs
during vectorized operation, where every core operates on a chunk of data with an address offset
of one word. E.g., for a 4-fold vectorized operation on data starting at address 0x2000 that is
computed by 4 CPUs, the addresses for the CPUs and their respective read/write ports will be
as shown in table 4.2.

Table 4.2: Vectorized access to cache banks
Core Address Bank

CePU(0) 0x2000 0
CoPU(1) 0x2004 1
CoPU(2) 0x2008 2
CoPU(3) 0x200c 3

A crossbar switch is used to route any of the bank RAM ports to a read or write port. Since bank
memory is implemented as two-port block RAM on the FPGA, reads from two different addresses
of a single bank can be routed through the switch at a time.

4.4 Execution Unit (EXU)

The EXU implements ParaNut architecture specific registers and the execution pipeline for the
ORBIS32 instruction subset. A comprehensive list of all implemented instructions can be found
in the ParaNut processor architecture manual [14]. A full set of 32 registers is implemented in
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the EXU. Alternative sizes for register files are not yet supported by the VHDL implementation.
This section explains the general structure of the execution pipeline and lists detailed information
about implemented special purpose registers.

4.4.1 Pipeline Structure

The pipeline structure of the EXU is shown in figure 4.5. The two stages in the EXU pipeline are
the instruction decode stage (ID) and the execute stage (EX). Their range of control is enclosed
by dotted outlines. Pipeline registers are indicated as gray rectangles with the name of the stage
above them. The results of every stage are saved in the pipeline registers with the same name
as the stage.
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Figure 4.5: Block structure of the execution pipeline.

The first stage, ID, directly takes the program counter (PC) and instruction register (IR) outputs
from the IFU. The IR is decoded to instruction set independent operations which are stored in the
ID stage’s registers. At the same time, the register file is accessed and sign-extended immediate
values are computed. Two values are then selected for the input operands of the EX stage,
depending on the value of the IR. The first operand is selected among PC and the value from
the register file that is addressed by the IR for operand A (regfile[IR.A]). The second operand is
multiplexed between regfile[IR.B] and the sign-extended immediate from the IR. Both are then
stored in the ID stage’s registers and will later directly serve as input operands to the ALU,
shift, or multiplication operations.

Next in line is the EX-stage. It is a multi-cycle implementation which takes the decoded output
from the ID-stage. Any result from ALU, shift, or multiplication operations is saved in a result
register in the EX-stage which is the only additional register for that stage. All other operands
as well as pipeline control signals and program counter can be taken from the ID-stage registers.
These registers will hold their contents for as long as the multicycle operation in the EX-stage
has not been completed. The minimum number of clock cycles needed to complete an instruction
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is 2 clock cycles for ALU and shift operations as well as jumps/branches (Note: The delay of
shift operations is 1 clock cycle only when not using a serial shift implementation. Otherwise,
the delay is proportional to the number of shifted bits.). This reflects the minimum delay for
cached memory read accesses in the MEMU, which is also 2 clock cycles. Hence, it can be
expected that new instructions are delivered by the IFU every 2nd clock cycle at most. Thus,
implementing a pipeline that can handle instructions in 1 clock cycle would be unnecessary from
a performance point of view and actually result in a more complex design with higher resource
usage. However, the VHDL source code has been written with an implementation of more stages
in mind as this can be achieved through merely modifying control of the pipeline stages. In the
first clock cycle, the result of the current instruction is computed and stored in the EX-stage
register. The ALU is used for arithmetic logical operations as well as address calculation for
load and store instructions and jumps. For ALU and shift operations, the second clock cycle
will take the result from the register and store it in the register file. During this clock cycle, the
next instruction can already be decoded and placed in the ID-stage registers. The register file
is implemented with forwarding logic in order to avoid pipeline data hazards that arise in this
situation. Addresses for jumps and branches as well as load and store operations are calculated
in the same manner. While a jump/branch can be handled within a total of 2 clock cycles, load
and store operations must wait until the LSU has served the request to memory and therefore
stall the pipeline. After the requested data has been served, it is stored in the register file. Other
operations like multiplication and shifting (when not using a one clock cycle implemenatation
like a barrel shifter) that cannot complete in one clock cycle will also stall the pipeline. Table 4.3
summarizes the clock cycle times needed for execution of different types of instructions. It is
further examined in section 6.2, whether and how well these delays can be reflected by the actual
implementation in hardware.

Exceptions are handled by an additional stage that is normally not interfering with the flow of
instructions in the pipeline. Only when an exception occurs the pipeline is stalled until all issued
instructions have completed and the exception can be handled. An instruction is issued when it
is committed from the ID to the EX stage. Therefore, the contents of the IF stage registers are
preserved and NOPs are inserted in the ID stage registers until the exception has been handled,
i.e. until the jump to the exception handler was performed.

Table 4.3: CPI for different instruction types
Instruction type CPI

program flow 2
arithmetic & logical 2
shift (barrel shifter) 2
shift (serial shifter) number of shifts + 2

multiplication number of multiplier pipeline stages + 2
load min. 4 (cached access)
store min. 3

4.4.2 General Purpose Registers (GPRs)

The EXU implements one register file with a full set of 32-bits wide general purpose registers. Re-
gister R0 is hard-wired to zero. The GPRs are not mapped to the SPR space.
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4.4.3 Special Purpose Registers (SPRs)

All special-purpose registers are implemented in the EXU. Unimplemented registers read a
zero value. As opposed to the OR1K architecture manual, the SR[SM] and SR[SUMRA] bits,
which are used to implement a privileged mode, are not decoded. Thus, all SPRs are always
readable and writable. However, for operating systems that run processes with a privileged
CPU mode the SM and SUMRA bits need to be implemented. Table 4.4 lists the implemented
SPRs.

Table 4.4: ParaNut Special Purpose Registers (SPRs)
GRP REG Name Mode Description
0 0 VR R Version register
0 1 UPR R Unit Present register
0 2 CUPCFGR R CPU Configuration register
0 5 DCCFGR R Data Cache Configuration register
0 6 ICCFGR R Instruction Cache Configuration register
0 16 NPC RW NPC (next PC) mapped to SPR space
0 17 SR RW Supervision register
0 18 PPC R PPC (previous PC) mapped tp SPR space
0 21:28 ISR0:ISR7 R Implementation-specific registers
0 32:47 EPCR0:EPCR15 R Exception PC registers (all mapped to

single register)
0 48:63 EEAR0:EEAR15 R Exception EA registers (all mapped to

single register)
0 64:79 ESR0:ESR15 R Exception SR registers (all mapped to

single register)
0 1024:1055 GPR0:GPR31 RW GPRs mapped to SPR space
24 0 PNCPUS R ParaNut Number of CPUs
24 1 PNM2CAP R ParaNut Mode-2 Capability
24 2 PNCPUID R ParaNut CPU ID
25 0 PNHCTRLR RW ParaNut Histogram Control register
25 64..127 PNHISTD64..127 R ALU instruction histogram registers
25 128..191 PNHISTD128..191 R SHIFT instruction histogram registers
25 192..255 PNHISTD192..255 R MUL instruction histogram registers
25 256..319 PNHISTD256..319 R LOAD instruction histogram registers
25 320..383 PNHISTD320..383 R STORE instruction histogram registers
25 384..447 PNHISTD384..447 R JUMP instruction histogram registers
25 448..511 PNHISTD448..511 R OTHER instruction histogram registers
25 512..575 PNHISTD512..575 R IFU histogram registers
25 576..639 PNHISTD576..639 R Cache line read histogram registers
25 640..703 PNHISTD640..703 R Cache line write histogram registers
25 704..767 PNHISTD704..767 R IFU cache read hit histogram registers
25 768..831 PNHISTD768..831 R IFU cache read miss histogram registers
25 832..895 PNHISTD832..895 R LSU cache read hit histogram registers
25 896..959 PNHISTD896..959 R LSU cache read miss histogram registers
25 960..1023 PNHISTD960..1023 R LSU cache write hit histogram registers
25 1024..1087 PNHISTD1024..1087 R LSU cache write miss histogram registers
25 1088..2047 PNHISTD1088..2047 R Custom histogram units
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From the ParaNut architecture, only the read-only registers PNCPUS and PNM2CAP are im-
plemented. PNM2CAP currently returns an all-ones value since no CoPUs are supported yet.
This and because there is no hardware synchronisation yet between CPUs, the PNCE, PNLM,
PNX and PNXID0..PNXID31 registers are not yet implemented. The VHDL implementation
introduces the PNCPUID register. It gives every CPU a unique ID which can be read via the
l.mfspr instruction and can be used for implementing a simple synchronisation mechanism in
software. This has been done in order to run software on a ParaNut processor with multiple
CPU cores.

SPR group 25 addresses the ParaNut Histogram Control register (PNHCTRLR) and all ParaNut
histogram units (PNHISTD64..2047). The unit implements a performance counter for different
types of events and is described in more detail in section 4.4.6. Every unit has a reserved address
range of 64 entries and are globally controlled by the HEN bit of the ParaNut Histogram Control
register (PNHCTRLR).

Version Register (VR)

The ParaNut uses the now deprecated Version Register. Future versions should use registers
AVR and VR2 for version information. Table 4.5 lists the fields of the VR.

Table 4.5: ParaNut Version Register (VR)
Bit(s) Name Mode Value Description
31:24 VER R 0x1f Version (0x1f = ParaNut)
23:16 CFG R 0 Configuration (reserved for future use)
15:7 - R 0 (reserved)
6 UVRP R 0 Updated VRs (AVR, VR2) present
5:0 REV R 0 Revision

Unit Present Register (UPR)

Except for instruction and data caches, no optional units are present. Table 4.6 shows the fields
of the UPR.

Table 4.6: ParaNut Unit Present Register (UPR)
Bit(s) Name Mode Value Description
31:24 CUP R 0 Custom Units Present
23:11 - R 0 (reserved)
10 TTP R 0 Tick Timer Present
9 PICP R 0 Programmable Interrupt Controller Present
8 PMP R 0 Power Management Present
7 PCUP R 0 Performance Counters Unit Present
6 DUP R 0 Debug Unit Present
5 MP R 0 MAC Present
4 IMP R 0 Instruction MMU Present
3 DMP R 0 Data MMU Present
2 ICP R 1 Instruction Cache Present
1 DCP R 1 Data Cache Present
0 UPR R 1 UPR Present
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CPU Configuration Register (CPUCFGR)

Table 4.7 lists the fields of the CPUCFGR.

Table 4.7: ParaNut CPU Configuration Register (CPUCFGR)
Bit(s) Name Mode Value Description
31:24 - R 0 (reserved)

14 AECSRP R 0
Arithmetic Exception Control Register
(AECR) and Arightmetic Exception
Status Register (AESR) present

13 ISRP R 0 Implementation-Specific Registers
(ISR0-7) Present

12 EVBARP R 0 Exception Vector Base Address Register
(EVBAR) Present

11 AVRP R 0 Architecture Version Register (EVBAR)
Present

10 ND R 0 No Delay-Slot
9 OV64S R 0 ORVDX64 Supported
8 OF64S R 0 ORFPX64 Supported
7 OF32S R 0 ORFPX32 Supported
6 OB64S R 0 ORBIS64 Supported
5 OB32S R 1 ORBIS32 Supported

4 CGF R 0..1
Custom GPR File

0: GPR file has 32 registers
1: GPR file has 16 registers

3:0 NSGF R 0 Number of Shadow GPR Files

Data/Instruction Cache Configuration Register (ICCFGR/DCCFGR)

Table 4.8 lists the fields of the DCCFGR. Since the ParaNut has a unified instruction/data
cache this table also applies to the Instruction Cache Configuration Register (ICCFGR). The
DCCFGR is mapped to the ICCFGR.

ParaNut Histogram Control Register (PNHCTRLR)

This register controls the histogram feature of the ParaNut. Table 4.9 shows the fields of the
register.
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Table 4.8: ParaNut Data Cache Configuration Register (DCCFGR)
Bit(s) Name Mode Value Description
31:15 - R 0 (reserved)

14 CBWBRI R 0 Cache Block Write-Back Register
Implemented

13 CBFRI R 0 Cache Block Flush Register Implemented
12 CBLRI R 0 Cache Block Lock Register Implemented

11 CBPRI R 0 Cache Block Prefetch Register
Implemented

10 CBIRI R 0 Cache Block Invalidate Register
Implemented

9 CCRI R 1 Cache Control Register Implemented
8 CWS R 1 Cache Write Strategy

7 BS R 0..1

Cache Block Size
0: Cache Block size 16 bytes or less

(OR1K: exactly 16)
1: Cache Block size 32 bytes or more

(OR1K: exactly 32)

6:3 NCS R 0..15

Number of Cache Sets (cache blocks per
way)

0: DC has one set
. . .

15: DC has 32768 sets

2:0 NCW R 0..2

Number of Cache Ways
0: DC has one way (direct-mapped)

1: DC has two ways
2: DC has four ways

Table 4.9: ParaNut Histogram Control Register (PNHCTRLR)
Bit(s) Name Mode Value Description
31:1 - R 0 (reserved)

0 HEN R/W 0..1

Histogram Enable register
0: Disable histogram performance

counting
1: Enable histogram performance

counting
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4.4.4 Interrupts and Exception Handling

Exceptions are handled according to the ParaNut architecture manual [14]. Since synchronisa-
tion mechanisms between CePUs and CoPUs are not yet implemented, there is no support for
CoPU exceptions. If an exception occurs that is not caused by an instruction, all issued in-
structions complete before the exception is handled. Support for exceptions listed in table 4.10
exists, though no optional units are implemented yet. Fast context switching is not supported
because only one set of exception registers is implemented.

Table 4.10: Supported Exceptions
Exception ID Description

Reset 0x1 Caused by hardware reset.

Tick Timer 0x5 Tick Timer interrupt asserted (optional, Tick Timer
Unit not implemented yet).

Alignment 0x6 Load/store access to naturally not aligned location.
Illegal Instruction 0x7 Illegal instruction in the instruction stream.
External Interrupt 0x8 External interrupt asserted.

System Call 0xC System call initiated by software.
Trap 0xE Caused by the l.trap instruction or by debug unit.

4.4.5 Wishbone Bus Interface (BUSIF)

The bus interface module provides access to a Wishbone B4 compliant Bus [16]. Standard
single read/write cycles are employed for direct (uncached) reads and writes. Depending on the
configured number of cache banks, cache line refills are either performed using a Standard Block
read/write cycle or a registered feedback bus cycle. The registered feedback bus cycle can be
used for burst accesses with 4, 8, or 16 words per burst. In all other cases, a standard block
cycle is used. Table 4.11 lists the information required by the Wishbone specification rule 2.15
[16] for Wishbone compatible IP cores.

Table 4.11: Wishbone Datasheet for the ParaNut Wishbone bus interface
Description Specification

General description: 32-bit MASTER interface for CPU IP
core

Revision level: B4

Supported cycles:

MASTER, SINGLE READ/WRITE
MASTER, BLOCK READ/WRITE

MASTER, INCREMENTING BURST
READ/WRITE

Optional ERR_I support: not supported
Optional RTY_I support: not supported
Tag support not supported
Data Port, size: 32 bits
Data Port, granularity: 8 bits
Data Port, maximum operand size: 32 bits
Data transfer ordering: Big endian and/or little endian
Data transfer sequencing: Undefined



4 Hardware architecture 21

Table 4.11: Wishbone Datasheet for the ParaNut Wishbone bus interface
Description Specification

Defined signal names

CLK_I, RST_I, ACK_I, ERR_I,
RTY_I, DAT_I

CYC_O, STB_O, WE_O, SEL_O,
ADR_O, DAT_O, CTI_O, BTE_O

4.4.6 ParaNut Histogram Unit

The ParaNut Histogram Unit is a custom unit that was developed for evaluating the ParaNut
VHDL implementation. It was used to generate the results for the detailed performance analysis
that is conducted in chapter 6. The unit is able to generate a histogram of the number of clock
cycles that is needed for certain events that can be triggered at arbitrary points inside the
ParaNut CPU. Additionally, the minimum and maximum number of clock cycles as well as the
total number of clock cycles and number of events are registered. This allows for a detailed
performance analysis of different aspects of the architecture. The units are read-only and are
accessible from the SPR space by the l.mfspr instruction. All implemented units and their
addresses are listed in table 4.4. Figure 4.6 shows a block diagram of the core components of a
histogram unit.
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Figure 4.6: Block diagram of a histogram unit
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The histogram unit is controlled by the 3 signals “start”, “stop”, and “abort”. The beginning
of an event is signaled by start = ’1’, and can be stopped with stop = ’1’. This updates the
minimum, maximum, and total number of clock cycles and registered events. Additionally, the
bin with the corresponding number of clock cycles is incremented. If an event is not to be
counted anymore after it has been started, it can be aborted with abort = ’1’. In the same clock
cycle that an event is stopped, the next event can be started.

The unit also has an address input and data output. Addresses 0..59 will address the 60 bins
of the unit. Addresses 60..63 address the minimum, maximum, total number of events, and
total number of clocks registers, in that order. All data can be read asynchronously on the data
output. If the number of clock cycles used for an event exceeds the maximum number of bins,
it is put into the last bin (i.e. 60).



5 ParaNut VHDL implementation

In order to be able to evaluate the ParaNut architecture, a synthesizable RTL VHDLmodel of the
ParaNut was made in the context of this work. Since it is the initial implementation of the VHDL
model, some of the main conceptual ideas behind it are outlined.

The ParaNut in this work is completely implemented in the VHDL programming language and
is targeted at synthesis on FPGA technology. In fact, throughout this work, it was successfully
synthesised for a Virtex-5 FPGA from Xilinx. Although only tested with this specific FPGA,
the code does not use any target technology specific components. Instead, it is designed to be as
cross-platform as possible and therefore uses inference for design elements as much as possible.
Besides this, all configuration is done via a central configuration file and allows for a generic
design that can be tuned to suit application specific needs.

5.1 General Code Structure

The ParaNut VHDL model is intended to support the same generic configuration mechanism
as the ParaNut SystemC reference model. Therefore, it sticks to it as closely as possible. All
module names of the original SystemC model have been adopted as well as most signal names,
as far as possible. However, the design follows the principles of the structured VHDL design
method as proposed by Jiri Gaisler [17]. Therefore, nearly all signals used for connecting entities
and registers have been grouped into VHDL records to help readability as well as maintainability.
Entity inputs and outputs, except for clk and reset signals, are grouped into input and output
records, respectively. A record type named “registers” is also used for all registers in the module.
It is without exception instantiated with the symbol “r”. Furthermore, modules utilize the two
process design method that is also proposed in the article: A combinational process is used to
generate output signals and signals all register contents for the next clock cycle to a second,
clocked process. Every module and its associated input/output record is included in a package,
so no component declarations are necessary in architecture descriptions of modules. The main
library name for all ParaNut modules is paranut.

The ParaNut VHDL model consists of the same functional modules as the SystemC model and
their names have been adopted as well. The main entity of a module is named just like the pack-
age name, but with a preceding small letter “m”. E.g., if a module is named “exu”, then its main
entity is called “mexu”. Modules that interface with the MEMU over a read or write port addi-
tionally must include the “memu_lib” package. It lists type definitions for read and write ports
and supporting functions useful when working with the MEMU.

5.2 Configuration Interface

Since the ParaNut design is meant to be scalable, a central configuration mechanism is provided
with the VHDL model. It resides in the file paranut_config.vhd. The following subsections
show the aspects that can be configured for each module within that file. It is embedded in a

23
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package with the name paranut_config and is included in all modules that can be configured
by this file.

5.2.1 Simulation Configuration Options

The configuration file contains some options that do only affect simulation. They are mainly
useful for debugging purposes and generate additional debug output. The options are lis-
ted in table 5.1. Any option can either be set to true to activate or false to deactivate
it.

Table 5.1: Simulation Configuration Options
Symbol Type Description

CFG_DBG_INSN_TRACE boolean This option enables/disables genera-
tion of an instruction trace for all CPU
cores.

CFG_DBG_LSU_TRACE boolean This option enables/disables debug
output for data accesses to the MEMU.

CFG_DBG_BUS_TRACE boolean This option enables/disables debug
output for accesses to main memory
and I/O addresses.

CFG_DBG_TRAM_TRACE boolean This option enables/disables debug
output for accesses to the cache tag
RAM internal to the MEMU.

CFG_DBG_BRAM_TRACE boolean This option enables/disables debug
output for accesses to the cache bank
RAM internal to the MEMU.

5.2.2 General Configuration Options

The configuration options listed in table 5.2 affect both simulation and synthesis.

Table 5.2: General Configuration Options
Symbol Type Description

CFG_NUT_CPU_CORES_LD natural

The number of CPU cores that will be
generated in the design.

0: 1 CPU core
1: 2 CPU cores

. . .

CFG_NUT_MEM_SIZE natural

The size of main memory in the
system in bytes. This has to be set for
both simulation as well as synthesis to
the correct size. However, this may
not be set too high for simulation, as
some tools don’t behave well when
simulating huge amounts of memory.
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Table 5.2: General Configuration Options
Symbol Type Description

CFG_NUT_LITTLE_ENDIAN boolean

Defines the byte ordering of the bus
interface.

true: Little endian byte ordering
false: Big endian byte ordering

CFG_NUT_HISTOGRAM boolean Enables or disables the generation of
histogram units.

5.2.3 IFU Configuration Options

Table 5.3 lists configuration options for the IFU.

Table 5.3: IFU Configuration Options
Symbol Type Description

CFG_IFU_IBUF_SIZE natural
(2..4)

The size of the instruction buffer.
2: 4 entries
3: 8 entries
4: 16 entires

5.2.4 LSU Configuration Options

Table 5.4 lists the configuration options for the LSU.

Table 5.4: LSU Configuration Options
Symbol Type Description

CFG_LSU_SIMPLE boolean Generate a simple LSU without store
buffer

CFG_LSU_WBUF_SIZE natural
(2..4)

The size of the store buffer (only
effective if CFG_LSU_SIMPLE is

false).
2: 4 entries
3: 8 entries
4: 16 entires

5.2.5 MEMU Configuration Options

Configuration options listed in table 5.5 affect the size of the cache.
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Table 5.5: MEMU Configuration Options
Symbol Type Description

CFG_MEMU_CACHE_BANKS_-
LD

natural
(1..4)

The number of cache banks. Every
bank has a data width of 32 bits.

1: Cache has 2 banks
. . .

4: Cache has 16 banks

CFG_MEMU_CACHE_SETS_LD natural
(1..15)

The number of cache sets.
1: Cache has two sets

. . .
15: Cache has 32768 sets

CFG_MEMU_CACHE_WAYS_LD natural
(0..2)

The number of cache ways.
0: Cache is direct-mapped

1: Cache is two-way set associative
2: Cache is four-way set associative

CFG_MEMU_CACHE_-
REPLACE_LRU

natural
(0..1)

Selection method for cache line
replacement.

0: Cache uses random replacement
(LFSR-based)

1: Cache uses LRU replacement

CFG_MEMU_ARBITER_-
METHOD

natural
(-1..15)

Arbitration method for arbiter module
inside MEMU.

-1: Random replacement
(LFSR-based)

0..15: Round-robin arbitration that
switches every 20..15 clocks

5.2.6 EXU Configuration Options

The configuration options listed in table 5.6 can be used to choose between different types of
implementations of modules in the EXU.

Table 5.6: EXU Configuration Options
Symbol Type Description

CFG_EXU_SHIFT_IMPL natural
(0..2)

Controls implementation of the shift
module.

0: Implement a serial shifter (smallest
area, slow)

1: Implement a generic shifter inferred
by synthesis tools.

2: Implement a barrel shifter (more
area, fast)
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Table 5.6: EXU Configuration Options
Symbol Type Description

CFG_EXU_MUL_PIPE_STAGES natural
(1..5)

Number of pipeline stages of the
embedded multiplier module.

1: Infer multiplier with 1 pipeline
stage
. . .

5: Infer multiplier with 5 pipeline
stages



6 Evaluation

This chapter shows the results of the evaluation that was performed with the presented ParaNut
implementation. The evaluation focused on three distinct aspects with the following set of
experiments:

• Benchmarks: CoreMark, Dhrystone, simple merge sort

• Detailed performance analysis using histogram units.

• FPGA resource usage and timing results for different configurations of the ParaNut

An xc5vlx110t-ff1136-1 Virtex-5 FPGA was used to evaluate the ParaNut VHDL implementa-
tion. It features 17,280 slices, each containing four look-up tables (LUTs) and flip-flops for a
total of 69,120 slice LUTs and flip-flops. It has 666 KiB of block RAM distributed over 148 block
ram cells with a capacity of 36 kbits each. 48 DSP slices can be used for multiplication of 25-bit
by 18-bit operands with a 48-bit result. Synthesis was performed using the Xilinx ISE tools
14.5. The following XST synthesis optimization options were used:

• -opt_mode Speed

• -opt_level 1

6.1 Benchmarks

6.1.1 Evaluation Platform

For the evaluation of the ParaNut on FPGA hardware, a peripheral system for the ParaNut
processor was necessary. This system is provided by the ORPSoC project from the OpenCores
project. Figure 6.1 shows the components of the system-on-chip that was built around the
ParaNut and used throughout evaluation.

The SoC is centered around a Wishbone bus arbiter with an accompanying byte-wide bus. All
components shown are connected through a single bus system. Both the ParaNut processor and
the debug unit have a Wishbone master interface and can initiate read and write access to the
slaves. The debug unit is used to remotely connect to the SoC via a JTAG interface and load
program data into DDR2 memory. For this task, the GNU Project debugger (GDB) was used.
At present, no other debugging functions like breakpoints, single-stepping, etc. are supported
because of the debug unit missing in the ParaNut VHDL implementation. For getting printouts
on a terminal via serial connection, a 16550 compatible UART is used. The GPIO module can
additionally provide input and output possibilities like switches or LEDs. Since the ParaNut
does not yet implement a tick timer unit, an external timer core is used for measuring time in
benchmarks. It has a granularity of 1 clock cycle. Although access to the timer is via the bus
and therefore is not as fast as for an internal tick timer unit, it is sufficient for the demands of
the benchmark time measurements.

28
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Figure 6.1: Block diagram of the system-on-chip used for evaluating the ParaNut architecture.

The system-on-chip was successfully synthesised for the Xilinx Virtex-5 FPGA that was intro-
duced in section 6.3 using the same set of synthesis tools. The build process was handled by the
ORPSoC makefile based build system which was slightly modified for use with VHDL source
files. The resulting FPGA bitfile was then put into operation on a Digilent XUPV5 board,
also known as ML509, running with a bus frequency of 50 MHz. The DDR2 RAM interface is
clocked at 266 MHz. For all benchmarks, the ParaNut was configured as shown in table 6.1 un-
less otherwise noted. For experiments where multiple CPUs were used, 1, 2, 4, and 8 CPUs were
synthesized for a clock speed of 25 MHz. Based on the same SoC, the OR1200 implementation
of the OR1K architecture is compared to the ParaNut for the benchmarks. As far as possible,
the OR1200 was configured similarly to the ParaNut. For the size of the caches a configuration
of 16 KiB for both instruction and data cache was chosen, with a line size of 16 Bytes. The
OR1200 has separate instruction and data bus access, but this should not be of consequence
for the benchmark results once the program has been loaded into the cache. The implemented
cache sizes should be big enough to hold the complete text code segments of the prgrams in the
cache.

6.1.2 Compiler Options

All benchmark programs were compiled with GCC version 4.5.1-or32-1.0rc4 of the OpenRISC
GNU toolchain utilizing the Newlib C library (linker flags: “-mnewlib”). Optimization level was
set to “-O3” and compiler flags corresponding to CPU capabilities were set to “-mhard-mul
-msoft-div -msoft-float”.

6.1.3 Dhrystone

The Dhrystone-2.1 benchmark [18] which can be obtained from the Fresh Open Source Software
Archive [http://fossies.org] was used in this work. The number of runs was set to 400,000.

http://fossies.org
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Table 6.1: ParaNut benchmark configurations
Parameter Value
CPU cores 1..8
Cache size 32KB
Cache sets 512

Cache line size 16 Bytes (4 banks)
Cache associativity 4 ways

Cache replacement strategy LRU
Instruction buffer size 4

Write buffer size 4
Shift implementation Barrel shifter

Multiplier pipeline stages 3
MEMU arbitration 7

Based on the evaluation platform that was described in the last section, the results for the
Dhrystone benchmark are as shown in table 6.2.

Table 6.2: Dhrystone benchmark results
Processor Dhrystones per second
ParaNut 25,667

ParaNut (no store buffer) 23,073
OR1200 37,821

For the Dhrystone benchmark, the use of a store buffer increases performance by about 7.5%.
However, if a small design with low resource usage is the primary design goal, then the LSU can
be omitted to lower resource usage and potentially improve timing. Here, the OR1200, which
has a 5-stage pipeline that can execute most instructions in 1 clock cycle [19] is about 47% faster
than the ParaNut.

6.1.4 CoreMark

The CoreMark benchmark from the Embedded Microprocessor Benchmark Consortium (EEMBC)
is targeted at evaluating CPUs designed for embedded devices [20]. It supports operation with
multiple cores through the use of pthreads, fork, or sockets by default. These methods are not
yet supported by the current VHDL implementation of the ParaNut presented in this work,
because of missing synchronisation between CPU cores and the lack of threading libraries and
operating system support. Since the CoreMark allows for operation with only using the stack
segment as memory location for objects, it is possible to run multiple parallel executions of the
same CoreMark program, if every core uses its own separate stack. Therefore, the C runtime
initialisation code of the OpenRISC GNU toolchain has been modified so that separate stacks
for different CPU cores are initialized. This is done by reading the CPU core identifier from the
PNCPUID CPU register and adding a fixed (negative) value to the stack pointer. Of course,
this bears the risk that a stack of one CPU will grow large enough to overwrite the stack of
another. An offset of 32 KiB was added to the stack of each CPU that should prevent over-
lapping of stacks for the programs tested. With the modifications in effect, it was possible to
run multiple “copies“ of the CoreMark in parallel at the same time. Although this does not
allow the CoreMark to run in parallel, the results can be used to show the correct operation and
the performance of the MEMU with multiple CPU cores. The results for runs with multiple
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CPUs were calculated by adding all of the single execution times for each CPU und dividing
them through the number of CPUs. The measurements were performed with 1 to 8 cores for the
ParaNut, which is the maximum number of cores that could fit on the FPGA. Cache size was
set to 64 KiB. Since the 8 core ParaNut had to be synthesised for a bus clock frequency of 25
MHz to avoid timing errors, all other processors were synthesized for the same clock frequency in
order to get comparable results. The number of runs was set to 500 so that a correct operation
was validated by the CoreMark program.

Table 6.3: CoreMark benchmark results

Processor CPU cores Iterations/sec
per core

Core-
Mark/MHz
per core

ParaNut

1 19.99 0.80
2 19.98 0.80
4 19.62 0.78
8 19.12 0.76

ParaNut (no store buffer)

1 18.48 0.74
2 18.47 0.74
4 18.23 0.73
8 18.00 0.72

OR1200 1 32.08 1.28

The results show no significant negative performance impact for the ParaNut when running
with up to 8 CPU cores in parallel. The use of a write buffer increases performance by about
3.2%. While the OR1200 is about 60% faster than the ParaNut single core, it does not support
multiple CPU cores.

6.1.5 Merge Sort

A simple merge sort program has been created that can use the parallel capabilities of the
ParaNut and use multiple cores to achieve a single objective. The algorithm is based on an idea
by John von Neumann [21] which follows the principle of divide and conquer. Figure 6.2 shows
how the algorithm was adapted to work with the ParaNut VHDL implementation presented in
this work.

0

0 0

0 1 2 3

0 0 1 1 2 2 3 3

l = 0:

l = 1:

l = 2:

l = 3:

... ...... ... ... ... ... ... ...

Figure 6.2: Basic principle of the merge sort implementation for ParaNut.

In the figure, an exemplary number of 4 CPUs is used to sort the array. Based on a recursive
algorithm the source array is divided into four equal slices that are then processed by each of
the 4 CPU cores. The number in each slice is the number of the CPU that is going to process
the slice. In the division phase, every core has to traverse the tree recursively and look for
his own slice to sort. For every level of recursion l the size of the remaining slice is halfed.
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When a CPU reaches level l = log2(n), where n is the number of CPUs (i.e. n = 4 ⇒ l = 2),
only the CPU with the same ID as the slice will continue traversing the remaining sub-tree
and finally sort and merge it. This is indicated by the dotted line in the figure. Only when
all CPUs have finished sorting and merging their sub-tree, the controlling CPU, i.e. the CPU
with ID 0, sorts and merges the remaining slices from l = log2(n) − 1 up to l = 0. A simple
synchronisation mechanism is used for reporting to the controlling CPU. Since only CPU0 will
sort the remaining slices, a linear speedup is not to be expected. The source code for the program
can be seen in listing C.1. Table 6.4 shows the results for a randomly generated array of 524,288
32-bit integers (2 MiB). The array will therefore not completely fit into a cache of 32 KiB size
so that an increased number of cache misses is to be expected. The times were again measured
for a bus clock frequency of 25 MHz. Cache hit rates were measured using the histogram feature
of the ParaNut VHDL implementation (see section 6.2.5).

Table 6.4: Merge sort benchmark results first run

Processor CPU cores Elapsed time/sec Speedup Data read
hit rate

Data
write hit

rate

ParaNut

1 45.886 1 95.00% 94.29%
2 28.460 1.61 93.84% 94.81%
4 21.312 2.15 92.26% 93.20%
8 22.858 2.01 89.02% 91.39%

OR1200 1 31.454 - - -

The OR1200 is about 45% faster than the single core ParaNut. The relative speedup for the
ParaNut decreases for an increasing number of cores and the absolute speedup for eight cores is
even lower than for four. The increasing number of cores seems to produce an increasing number
of cache misses as multiple CPUs simultaneously request data from different addresses that are
spread evenly across the whole range of the array. The small cache size in comparison to the
array size seems to limit the maximum speedup here. An additional run for the ParaNut with
a cache size of 256 KiB was made. Additionally, the array size was reduced to 128 KiB. The
results are shown in table 6.5.

Table 6.5: Merge sort benchmark results second run

Processor CPU cores Elapsed time/sec Speedup Data read
hit rate

Data
write hit

rate

ParaNut

1 2.270 1 99.98% 99.98%
2 1.200 1.89 99.93% 99.96%
4 0.764 2.97 99.84% 99.94%
8 0.640 3.54 99.26% 99.89%

Hit rates obviously benefit from the increased cache size and reduced array size. However,
the speedup does not seem perfect yet, and cache misses are still present. The more CPU
cores, the more accesses to addresses with the same index address but a different tag address
may happen at the same time. A 4-way set associative cache is not able to hold more than
4 entries for the same index address which may be a bottleneck if more than 4 CPUs are
used. The next section will have a more deeper look into what can cause performance bottle-
necks.
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6.2 Detailed Performance Analysis

The section consists of a series of experiments measuring performance for different events inside
of the ParaNut architecture using the histogram feature of the ParaNut VHDL implementa-
tion. The same evaluation platform and benchmark programs as in the previous section are
used. The ParaNut was configured with a cache size of 16 KiB, 4 ways, and 16 bytes cache
line size. Other parameters are given in the relative sections. For all measurements, if more
than 1 CPU is involved, average values have been calculated as the arithmetic mean across all
CPUs.

6.2.1 Instruction Throughput

Instruction execution times have been measured for different classes of instructions. Table 6.6
shows the results for 500 runs through CoreMark with 1 CPU core and an LSU with 4 entry
store buffer and without store buffer. Execution times are measured in clock cycles from the
point when an instruction is issued (beginning in the execute stage) to its last clock cycle in
the execution stage when the next instruction is about to be issued in the next clock cycle.
The category for “other” instructions includes instructions such as NOPs and also branches
that are not taken. Instruction fetch delays are measured beginning from a memory read re-
quest of the IFU to memory until the instruction is about to arrive in the next clock cycle.
Because read ports are pipelined they acknowledge in the clock cycle before data actually ar-
rives.

Table 6.6: Dhrystone instruction execution times in number of clock cycles

Event Min Avg Max Count % of total
time

ALU instructions 2 2.00 2 158,400,927 47.63
Shift instructions 2 2.00 2 47,200,398 14.19

Multiply instructions 5 5.00 5 400,002 0.30
Load instructions 4 4.00 13 26,800,030 16.12
Store instructions 3 3.04 9 22,800,028 10.40

Jump/Branch instructions 2 2.00 2 30,800,184 9.26
Other instructions 1 1.00 1 14,000,122 2.11
All instructions 1 2.21 13 300,401,691 100.00
Instruction fetch 1 2.04 163 300,401,691 -

As can be seen from the measurements, except for load and store instructions, execution times of
instructions are constant. They are also in line with the times proposed in the EXU architecture
description in section 4.4.1. Store instructions require a minimum of 3 clock cycles when using a
LSU with a store buffer. Load instructions complete in 4 clock cycles at least. The total average
CPI across all instructions is 2.21. The minimum instruction fetch delay is 1 clock cycle and
occurs on incidental hits in the bus interface when the cache is cold and the bus interface is
reading cache lines from main memory to the cache. However, the number of bus interface hits
was 97 compared to the total number of 300,401,691 instruction fetches so their ratio is virtually
zero. When the cache is hot, the average instruction fetch delay of 2.04 clock cycles reflects very
well the minimum time for a cache hit of 2 clock cycles. The average CPI for all instructions
lies slightly above the average number of clock cycles for instruction fetches which indicates that
the IFU can sustain a constant instruction stream for the EXU.
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The same measurements have been repeated for the CoreMark and merge sort programs with 1
to 8 CPU cores, in order to examine performance for load and store operations with an increased
workload for the MEMU. Only delays for load operations, store operations, all operations, and
instruction fetches are shown, because the minimum, average, and maximum number of clock
cycles for all other categories remain constant. The results are shown in table 6.7 and 6.8
for both programs. The cache for the merge sort program is 256 KiB and array size is 128
KiB.

Table 6.7: CoreMark instruction execution times in number of clock cycles
Num-
ber of
cores

Min Avg Max Count % of total
time

Load instructions
1 4 4.00 43 31,929,065 24.84
2 3 4.00 54 63,858,130 24.84
4 3 4.07 198 127,716,260 25.17
8 3 5.04 1983 255,432,520 30.29

Store instructions
1 3 3.00 43 8,498,133 4.96
2 3 3.00 43 16,996,266 4.96
4 3 3.01 259 33,992,532 4.95
8 3 3.56 2050 67,985,064 5.57

All instructions
1 1 2.28 43 225,355,337 100.00
2 1 2.28 54 450,710,674 100.00
4 1 2.29 259 901,420,862 100.00
8 1 2.50 2050 1,802,839,826 100.00

Instruction fetch
1 1 2.04 72 225,355,337 -
2 1 2.04 71 450,710,674 -
4 1 2.08 256 901,420,862 -
8 1 2.26 1733 1,802,839,826 -
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Table 6.8: Merge sort instruction execution times in number of clock cycles
Num-
ber of
cores

Min Avg Max Count % of total
time

Load instructions
1 3 4.00 155 2,088,491 18.08
2 3 4.01 162 2,088,788 18.09
4 3 4.06 575 2,088,713 18.11
8 3 4.15 877 2,089,665 17.16

Store instructions
1 3 3.00 113 1,638,392 10.64
2 3 3.03 208 1,638,425 10.73
4 3 3.29 602 1,638,611 11.50
8 3 5.42 1181 1,639,463 17.59

All instructions
1 1 2.19 155 21,095,682 100.00
2 1 2.19 208 21,097,188 100.00
4 1 2.22 602 21,096,831 100.00
8 1 2.39 1881 21,103,442 100.00

Instruction fetch
1 1 2.04 130 21,095,682 -
2 1 2.05 201 21,097,188 -
4 1 2.06 403 21,096,831 -
8 1 2.10 907 21,103,442 -

In overall, the average instruction throughput seems to remain constant across all tests with a
little more delay for 8 cores. However, the maximum delays show an increase of up to 500%
when comparing 8 to 1 core CPUs. This is to be expected because shared resources like the
bus interface will be demanded more frequently and a port may have to wait many bus cycles
before it is finally granted the bus interface. What can also be seen is that for eight cores the
average delay for store operations increases by 81% compared to the one core configuration,
which reflects the lower priority for write ports. The relative amount of clock cycles spent
for store instructions compared to all instructions therefore rises by 7%. The average load
and instruction fetch delays from one to eight CPU cores only increase by 3.75% and 2.94%,
respectively.

6.2.2 LSU Load/Store Performance

In order to further examine the influence of a store buffer on the performance of load and store
instructions, their execution times were compared for different store buffer sizes. Table 6.9 shows
the average execution times in number of clock cycles for 500 runs through CoreMark varying
the number of CPU cores. Table 6.10 shows the average execution times for loads and stores for
the merge sort program.

As can be seen, a store buffer generally improves performance not only for the minimum but
also for the average delay of store operations. However, the biggest improvement can be seen
when comparing the 0 and 4 entry buffers. Delays for buffer sizes greater than 4 do not to
improve that much. Surprisingly, latency for load instructions seems to be slightly increased.
However, load times are not as badly influenced as is the benefit for stores. The results for the
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Table 6.9: Average load/store execution times for CoreMark in number of clock cycles

Instruction Class
Store
buffer
entries

1 core 2 cores 4 cores 8 cores

LOAD

0 4.00 4.00 4.15 5.92
4 4.00 4.00 4.15 6.45
8 4.00 4.00 4.18 5.56
16 4.00 4.00 4.18 5.56

STORE

0 5.72 5.77 6.39 10.14
4 3.00 3.00 3.17 4.41
8 3.00 3.00 3.12 3.56
16 3.00 3.00 3.07 3.48

Table 6.10: Average load/store execution times for merge sort in number of clock cycles

Instruction Class
Store
buffer
entries

1 core 2 cores 4 cores 8 cores

LOAD

0 4.54 6.26 8.86 19.60
4 4.56 7.11 13.10 31.78
8 4.56 7.23 12.85 30.81
16 4.56 7.21 12.39 30.61

STORE

0 7.11 12.83 24.29 53.46
4 3.01 4.62 10.34 32.18
8 3.00 4.40 8.98 29.49
16 3.00 4.05 7.83 28.82

merge sort program show that delays for stores without a write buffer are increasing much more
with the number of CPU cores when more cache data read and write misses are to be expected
(32 KiB cache vs 2 MiB array size). During loads, store buffer partial hits that must forward
bytes from the store buffer but still access the MEMU to fetch the remaining bytes accounted
for a maximum of 0.8% of all loads seen in all benchmarks. The fraction for total store buffer
hits that could forward a data word immediately did not exceed 1.1% for all read operations.
However, with an increasing number of CPU cores, the number of hits in the store buffer was
higher, probably because data words stayed longer in the store buffer due to higher demands to
the shared resources of the MEMU.

6.2.3 IFU Instruction Fetch Performance

Different sizes of the instruction fetch buffer in the IFU have been examined for influence on
average instruction fetch read delays. The times have been measured for 4 to 16 instruction
buffer entries with a varying number of CPU cores using the CoreMark program. Instruction
fetch delays are measured from the beggining of a read request of the IFU until the read port
acknowledges. The results are shown in table 6.11.

The measurements indicate, that there is no significant reduction in average instruction fetch
delay for an increased number of instruction buffer entries. The maximum increase is 1.9% for
the 16 entry buffer compared to the 4 entry buffer. Therefore, it could be worth investigating
an IFU without store buffer in order to save additional slices.
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Table 6.11: Average instruction fetch delays for CoreMark in number of clock cycles
Instruc-
tion
buffer
entries

1 core 2 cores 4 cores 8 cores

4 2.04 2.04 2.11 2.24
8 2.01 2.01 2.07 2.24
16 2.01 2.01 2.07 2.21

6.2.4 Bus Interface Performance

The bus interface is responsible for reading and writing cache lines from and to main memory
and therefore has a significant influence on cache miss performance. Since access times to the
external DDR2 memory are not known, the delay times for reading and writing a cache line to
and from memory are determined. Time is measured for the full Wishbone bus cycle during
reading or writing a full cache line. Cache line sizes of 16, 32, and 64 bytes show the performance
of main memory and bus system for 4-, 8-, and 16-word bursts respectively. They employ an
incrementing burst read/write cycle for the Wishbone bus interface which is also supported by
the bus interface of the DDR2 memory controller. Table 6.12 shows the results for both reads
and writes.

Table 6.12: Bus interface read delay to main memory in number of clock cycles
read writeBurst count (words) min avg max min avg max

4 7 36 93 9 39 93
8 11 41 96 13 44 96
16 19 49 105 21 53 105

As far as the results show, burst access to the DDR2 memory controller seems to be correctly
implemented. Reads have a minimum offset of 3 clock cycles and then take 1 extra clock cycle
for every word to be read. The offset for writes is 5 clock cycles. The maximum delays seem to
be constant across reads and writes, increasing by a constant offset of 3 and 12 clock cycles for
8 and 16 word bursts respectively.

6.2.5 Cache Performance

This section compares cache performance of the MEMU for a varying number of CPU cores.
Time was measured from the beginning of a read or write request to a port until it is acknowleged.
Cache read hit and miss delays for instruction and data ports as well as cache write hit and miss
delays for data ports are examined using the CoreMark and merge sort programs from before.
Here, cache size was 32 KiB and the size of the array for the merge sort program was set to 2
MiB. Tables 6.13 through 6.15 show the delays in number of clock cycles varying the number
of CPU cores. For benchmark runs where multiple CPUs were involved, the minimum and
maximum delays are the best and worst case results across all CPUs. Note: Hit and miss rates
for reads may not amount to a total of 100%. The difference is the percentage for incidental bus
interface hits.

For cache read hits, the minimum and average delay times do not increase much with the number
of CPU cores. Only for write hits, the average access time is increasing more strongly than for
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Table 6.13: Cache delay for instruction reads in number of clock cycles
CPU cores Hit rate min avg max Miss rate min avg max

CoreMark
1 99.99% 2 2.05 5 <0.01% 7 13.28 75
2 99.99% 2 2.05 8 <0.01% 8 13.86 75
4 99.91% 2 2.10 14 0.06% 3 27.15 533
8 99.85% 2 2.30 23 0.09% 3 97.73 2,064

Merge sort
1 99.99% 2 2.07 8 <0.01% 9 27.67 234
2 99.99% 2 2.09 10 <0.01% 3 45.21 559
4 99.99% 2 2.16 18 <0.01% 4 249.62 3,122
8 99.99% 2 2.23 20 <0.01% 3 555.21 6,179

Table 6.14: Cache delay for data reads in number of clock cycles
CPU cores Hit rate min avg max Miss rate min avg max

CoreMark
1 99.99% 2 2.00 5 <0.01% 43 43.00 43
2 99.99% 2 2.00 5 <0.01% 15 39.75 15
4 99.54% 2 2.07 12 0.42% 3 30.91 729
8 97.11% 2 2.33 21 2.17% 3 132.10 2,151

Merge sort
1 94.66% 2 2.01 5 5.33% 8 18.07 197
2 93.66% 2 2.02 7 6.12% 3 80.01 548
4 92.02% 2 2.10 11 7.18% 4 173.06 6,479
8 88.44% 2 2.19 14 9.12% 3 393.93 14,956

Table 6.15: Cache delay for data writes in number of clock cycles
CPU cores Hit rate min avg max Miss rate min avg max

CoreMark
1 99.99% 3 3.42 9 <0.01% 26 47.72 103
2 99.99% 3 3.49 46 <0.01% 24 44.75 104
4 99.71% 3 4.29 513 0.29% 24 75.72 1,012
8 98.73% 3 10.06 1,013 1.27% 24 213.75 3,129

Merge sort
1 97.01% 3 3.55 143 2.99% 26 42.67 311
2 94.84% 3 7.24 395 5.16% 24 159.10 952
4 93.00% 3 13.81 698 7.00% 24 325.73 8,231
8 91.75% 3 28.60 1,780 9.25% 24 547.98 10,129

read hits. This demonstrates again the influence of different priorities of read and write ports.
The overall minimum access time for cache read hits is two clock cycles and 3 for write hits which
is the theoretical minimum delay. However, the average and maximum miss delays significantly
increase with the number of CPU cores. This is for both instruction reads as well as data reads
and writes. This becomes clear when looking at the delay times for data cache misses for the
merge sort program. Since the size of the array to be sorted is much greater than the cache
size, cache miss rates are increasing significantly with an increase of the number of CPU cores.
Additionally, even with only one CPU, miss rates are high to begin with. Since program code
size is relatively small, miss rates for instruction fetches are not significant for both CoreMark
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and merge sort. The overall minimum read miss delay can be as low as 3 clock cycles because
of read ports watching out for incidental bus interface hits. The delay is much higher for write
ports that cannot benefit from this.

6.3 ParaNut Resource Usage and Timing Results

This section is going to show resource usage and timing results for different configurations of
the ParaNut processor. Table 6.16 shows the configuration that was used to generate area and
timing reports, unless otherwise noted. Parameters that have a range argument (e.g. 1..16) in
the table will be varied in the different experiments and further be specified in the respective
subsections.

Table 6.16: ParaNut resource usage and timing results configurations
Parameter Value
CPU cores 1..16
Cache size 4..32 KiB
Cache sets 64..1024

Cache line size 16..64 Bytes (4..16 banks)
Cache associativity 1..4 ways

Cache replacement strategy LRU
Instruction buffer size 4

Write buffer size 4
Shift implementation Barrel shifter

Multiplier pipeline stages 3
MEMU arbitration 7

The numbers that are extracted from the synthesis reports for documenting resource usage
are:

• Number of occupied slices

• Number of slice flip flops

• Number of 4 input Look-Up-Tables

• Number of block RAM cells

From the timing reports the following items were extracted:

• Minimum period

• Minimum input arrival time before clock

• Maximum output required time after clock

• Maximum combinational path delay

Block RAM usage is documented only for the experiments in section 6.3.4, where resource usage
depending on cache size is examined.
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6.3.1 Modules Relative Resource Usage

First, the overall distribution of slices relative to the modules of the ParaNut is examined.
Figure 6.3 shows the slice usage of all the main modules of the ParaNut VHDL implementation
in comparison. The numbers in parentheses show the total ratio of slices that is used on the
FPGA.

1 core
4,050 (5.86%)

1,320 33%

365

9%

576

14%

1,789
44%

2 cores
7,839 (11.34%)

2,640 34%

730

9%

1,152

15%

3,317

42%
EXU
IFU
LSU
MEMU

4 cores
15,169 (21.95%)

5,280 35%

1,460

10%

2,304

15%

6,125

40%

8 cores
31,671 (45.82%)

10,560 33%

2,920

9%

4,608

15%

13,583
43%

16 cores
65,962 (95.43%)

21,120 32%

5,840

9%

9,216

14%

29,786
45%

Figure 6.3: Percentaged slice usage for main ParaNut components.

While the proportions do not seem to change with the number of cores, the MEMU takes most
of the total area into account with about 43%. Next in line is the EXU with about 33% of the
total area. LSU and IFU share the last of the remaining 24% of area where they constitute 15%
and 9% respectively. In order to save area, components like the LSU could be omitted from
the design. The influence of the store buffer of the LSU on performance has been examined in
section 6.2.2. An implementation without IFU could also reduce area consumption and has yet
to be implemented.

Most of the area is consumed by the MEMU. Figure 6.4 shows the resource usage of components
of the MEMU in comparison. In overall, the proportions do not seem to change for the MEMU
as well. The spike for slice usage of the interconnect in the diagram for 2 cores is not in line
with the rest of the diagrams. This may be due to different outcomes during optimisation of
the synthesised netlist by the synthesis tool. For every CPU core, the number of read ports
and write ports is doubled. This suggests that the number of slices is doubled as well, and slice
usage for the other components seem to behave equally. The interconnect includes resources
that are used for routing and multiplexing addresses and data between all of the components,
including the crossbar switch that is used to route any of the cache banks to read ports, write
ports, and the bus interface. The arbiter is a mealy based combinatorial circuit that has to
convey grants to every read and write port and the bus interface. Hence, the number of read
and write ports seems to have direct influence on area consumption of the MEMU. In the future,
the implementation of CePUs with a capability of 1 that do not have a read port for fetching
instructions could help in reducing slice usage.
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Figure 6.4: Percentaged slice usage for MEMU components.

6.3.2 Area and Timing For Different Numbers of CPUs

Figures 6.5 and 6.6 show area and timing results for different configurations of the Para-
Nut VHDL implementation varying the number of CPU cores. The parameters are as fol-
lows:

• CPU cores: 1, 2, 4, 8, 16

• Cache size: 16 KiB

• Cache sets: 256

• Cache line size: 16 Bytes

• Cache associativity: 4-way

As can be seen in the figures, slice usage appears to scale linearly with the number of CPU
cores. The average increase in slices for a doubling of CPU cores is 97%. This is in line
with the tendency that can be seen from the previous measurements. However, if CoPUs are
implemented that support a lower capability, a lower increase in slice usage is to be expec-
ted.

The minimum period increases by an average of 40% with the number of CPU cores. The critical
path that designates the minimum period is identified ranging from the MEMU tag RAM hit
logic to a read port which then requests a bank from the arbiter based on a tag RAM hit. A
write port can concurrently request a bank from the arbiter and if it does not interfere with the
read port bank request, the write port additionally requests a linelock from the arbiter. Based
on the outcome of the returned grant signal, the next contents of the write port state machine
registers are determined. As the number of CPU cores grows, so does the number of read and
write ports, and with it the the number of gates that has to be passed for the combinational logic
that determines grant signals. Since the write port requests another grant signal based on the
outcome of a previous requested grant signal, the path leads 2 times through the combinational
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Figure 6.5: Slice usage for different number of CPU cores.
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Figure 6.6: Minimum period for different number of CPU cores.

logic of the arbiter in one clock cycle. In order to improve timing, breaking the chain at the
point where the first grant is given looks promising in terms of improved timing, and even
could help in reducing slice usage. Another approach would be to implement the arbiter as
a moore type state machine, but this would probably increase the minimum delay for cache
read hits from 2 to 3 clock cycles. To catch up on the lost clock cycle, requests to tag and
bank RAM could be issued simultaneously by read ports, so that in the case of a cache hit,
data is immediately available in the next clock cycle. However, this would have to be carefully
planned, as this would have consequences for all parts of the MEMU which is a carefully balanced
structure.
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The minimum input required time is 2.204 ns for all configurations depending on a path that
ranges from the acknowledge signal of the Wishbone bus to a register in the bus interface which
signals to the read ports that valid input data from the bus arrived. It can be used by the read
ports to read data that is not yet in the cache (bus interface hit).

The maximum output required time is 2.694 ns for a path originating from the bus interface
that multiplexes output data to the Wishbone bus based on its current state register. Last,
there is no combinational path for the ParaNut processor.

6.3.3 Area and Timing for Different Cache Associativity

For the results shown in figures 6.7 and 6.8, the number of cache ways has been varied. In
order to keep cache size constant, the number of cache sets is halved with a doubling of cache
associativity. The results are shown for 1 to 16 CPUs. Only slice usage and the minimum period
are shown. The parameters are:

• CPU cores: 1, 2, 4, 8, 16

• Cache size: 16 KiB

• Cache sets: 1024, 512, 256

• Cache line size: 16 Bytes

• Cache associativity: 1-, 2-, 4-way

1 core 2 cores 4 cores 8 cores 16 cores
0

20000

40000

60000

80000

N
u
m

b
e
r 

o
f 

o
cc

u
p
ie

d
 s

lic
e
s

1 way
2 ways
4 ways

Figure 6.7: Slice usage for different cache associativity.

The results show an average increase of 4.17% in slice usage for increased associativity while
there seems to be no significant impact on the minimum period.
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Figure 6.8: Minimum period for different cache associativites.

6.3.4 Area and Timing for Different Cache Sizes

Figures 6.9 and 6.10 show results for different cache size configurations by varying the number of
cache sets. The measurements have been made for 1 to 16 CPU cores. Additionally, figure 6.11
shows block RAM usage and its distribution on tag RAM and bank RAM. The parameters
are:

• CPU cores: 1, 2, 4, 8, 16

• Cache size: 8, 16, 32, 64, 128, 256 KiB

• Cache sets: 64, 128, 256, 512, 1024, 2048

• Cache line size: 16 Bytes

• Cache associativity: 4-way

As can be seen in the figures, increasing cache size does not show any significant impact on
slice usage. The highest average increase for the minimum period can be seen for the 2
CPU configuration with 3.82% and the lowest increase is for the 16 CPU configuration with
0.50%.

Block RAM usage is dependent on the number of cache sets, cache ways, cache banks, and
number of CPU cores. Doubling the number of cache sets effectively doubles the amount of
memory (and therefore the number of addresses) needed for both tags and banks. For the
caches from 4 KiB to 16 KiB, no additional block RAM cells are needed for both tag and bank
RAM for a given number of CPU cores, since the effectively needed memory is smaller than
can fit into a single block RAM cell. A single block RAM cell for the Virtex-5 FPGA can
hold up to 4.5 KiB of memory. A single bank of a 16 KiB cache that has 4 banks is 4 KiB
in size, so up to this point only one block RAM cell per bank will be used. The same applies
to the number of cache ways, but for the tag RAM, instead of the number of addresses, the
number of data bits to be stored is doubled. If implemented, there is also a small overhead for
LRU information that needs to be stored along with the tag address as well as valid and dirty
bits.
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Figure 6.9: Slice usage for different cache sizes.
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Figure 6.10: Minimum period for different cache sizes.

The number of cache banks does not affect tag RAM size, but only bank RAM size. It is the
other way round for the number of CPU cores, which doubles the amount of tag RAM needed,
since every CPU core has its own port to the tag RAM.

(Note: The number of bits needed for storing the tag address is actually reduced by one bit for
every doubling of the number of cache sets as well as cache banks, but this will rarely influence
the amount of block RAM needed.)
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Figure 6.11: Block RAM usage for different cache sizes.

6.3.5 Area and Timing For Different Number of Cache Banks

The impact of varying cache line size by altering the number of cache banks is shown in figures
6.12 and 6.13. For a doubling of the number of banks, the number of cache lines is halved to
keep cache size constant. All parameters are shown for 1 to 16 CPU cores. The parameters
are:

• CPU cores: 1, 2, 4, 8, 16

• Cache size: 16 KiB

• Cache sets: 256, 128, 64

• Cache line size: 16, 32, 64 Bytes

• Cache associativity: 4-way

Increasing cache line size shows an average increase of 28% in slice usage. The minimum period
seems to increase more with a higher number of CPU cores. The relative increase per doubling
of banks is 3% for 2 cores and 7.7% for 16 cores. By increasing the number of banks, more logic
is needed for the crossbar switch of the MEMU that routes read and write ports as well as the
bus interface to the bank RAM ports. The critical path is the same as for the path described in
section 6.3.2. However, as can be seen from this example, the length of the chain of logic gates
is also increased by the number of cache bank RAM ports. Here, the same suggestions as in the
mentioned section apply.
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Figure 6.12: Slice usage for different number of cache banks.
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6.3.6 EXU Resource Usage and Timing Results

The EXU has three different implementations for the shift logic. An implementation without
hardware multiplier, which is not mandatory by the OR1K architecture, is also compared. All
EXUs with hardware multiplier had a 3 stage multiplier pipeline. Resource usage and timing
results are shown in figures 6.14 and 6.15.
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Figure 6.14: Slices for Different Configurations of the EXU.

Minimum period Minimum input
arrival time
before clock

Maximum output
required time
after clock

Maximum
combinational
 path delay

0

2

4

6

8

Ti
m
e
 /
 n
s

6.12
5.85

3.80

2.13

6.12

5.24

3.80

2.13

6.12

5.26

3.79

2.13

5.80

5.15

3.64

2.13

serial shifter
generic shifter
barrell shifter
no hw multiply

Figure 6.15: Timing results for Different Configurations of the EXU.

The EXU with serial shift implementation uses a little more registers than the the other two.
For the number of occupied slices, the generic shifter which is inferred by the synthesis tool has
the worst value. In all cases, the minimum period allows for a clock frequency of 163.40 MHz.
Maximum output required time as well as combinational path delays are all equal. The minimum
input arrival time is slightly increased for the serial shifter. The generic shift implementation
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seems not to be a good choice, because it does not provide faster timing and has higher resource
usage than the barrel shifter. About 6% of slices can be saved with an implementation without a
hardware multiplier. The hardware multiplier uses 3 additional DSP48 slices. Implementations
of CePUs with a capability of 2 could save area by omitting logic for interrupt and exception
handling as well as privileged instructions. A CePU with a capability of 1 would additionally
lose the portion that is used for decoding instructions.

Critical paths are the same for all implementations with a hardware multiplier. Here, the min-
imum period is limited by the multiplier pipeline registers. In case of the 1-stage implementation
it is 7.537 ns (132.679 MHz). For the EXU without a hardware multiplier, the path leads from
the decode-stage registers through the ALU to the zero test comparator that then sets the input
to the flag bit of the supervision register (SR). The minimum input arrival time is constrained
by a path in the instruction decode stage, where the multiplier input operands are determined
by decoding the instruction register from the IFU, reading the register file operands, and fi-
nally storing them in the first multiplier pipeline register. Maximum output required time and
combinational path delay are both determined by a path signaling to the IFU that the next in-
struction can be fetched. In the first case it originates from the instruction decode stage pipeline
registers. For the combinational path delay the debug unit stall signal that stalls the execution
of all instructions is the source.

6.3.7 IFU Resource Usage and Timing Results

This section examines resource usage and timing results for different sizes of the instruction fetch
buffer internal to the IFU. Figures 6.16 and 6.17 show the results.
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Figure 6.16: Slice usage for different IFU instruction buffer sizes.

As can be seen in the figures, resource usage scales linearly with a doubling of buffer size. All
timing values are affected by an average increase of 24%. They can increase an otherwise non-
critical path for the ParaNut that originates from the tag RAM hit logic of the MEMU. Based
on a cache hit, the IFU read port sends a request to read a bank to the arbiter. If the request in
granted, the read port acknowledges to the IFU which then calculates the next instruction fetch
address and places it in a register. As the results in section 6.2.3 showed an instruction buffer
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Figure 6.17: Timing results for different IFU instruction buffer sizes.

does not necessarily increase the performance of instruction fetches. However, an implementation
without instruction buffer has yet to be realised and evaluated.

6.3.8 LSU Resource Usage and Timing Results

This section examines the influence of the LSU store buffer size on resource usage and timing
results for the LSU. Figures 6.18 and 6.19 show the results for a store buffer with 0 to 16
entries.
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Figure 6.18: Slice usage for different sizes of the LSU store buffer.

Doubling the number of store buffer entries increases slice usage by an average of 121%. The LSU
without store buffer does not use any registers and only a few LUTs that are mainly needed
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Figure 6.19: Timing results for different sizes of the LSU store buffer.

for formatting and sign-extending data words. Timing values are increased by an average of
13.5% per doubling of store buffer entries. The critical path is specified as originating from an
address in the store buffer registers leading through a comparison with the hit logic for reads
and writes which finally determines the contents of the write buffer registers for the next clock
cycle. The use of a store buffer and its impact on performance of load and store operations
was examined in section 6.2.2. The results showed, that a store buffer generally increased
performance for store operations but did not yield significant improvements for greater buffer
sizes.



7 Conclusion

In the context of this work, a functional VHDL implementation of a ParaNut processor was
implemented. It was then successfully embedded into a system-on-chip that enabled execution
of binary programs on the processor on FPGA hardware. A set of benchmark programs was then
used to validate the functionality and evaluate the performance of the implemented ParaNut
processor. In a second step, the implemented processor was then supplied with performance
profiling hardware. This allowed a detailed analysis of the performance of core components
of the ParaNut architecture at critical points in the design. Instruction throughput, delays
for load and store operations as well as cache hits and misses were analysed in the context of
different workloads and configurations. Furthermore, the influence of different instruction and
store buffer sizes on overall performance was examined. The evaluation could be conducted with
an implementation of up to 8 CPU cores.

The next step was to evaluate the ParaNut in terms of resource usage and timing for the FPGA
that was used in the functional and performance evaluation. This was done for different config-
urations of the ParaNut and allowed to identify what the components are that use the most re-
sources. Moreover, critical paths for the system were identified. Based on the results, suggestions
were made for reducing area consumption and improving timing.

Finally, the ParaNut processor that was implemented in the context of this work provides a start-
ing point for further development on the ParaNut architecture,
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8 Next Steps

This chapter gives an outlook on the possible future enhancements to the ParaNut VHDL
implementation and the ParaNut architecture in general.

8.1 Improving Timing and Minimizing Resource Usage

Chapter 6 showed, where the critical paths for different modules of the ParaNut are and what
are the modules with the highest resource usage. Based on this information, improvements to
the implementation can be made. Implementing CoPUs with reduced capability can also help
in improving both goals. The results also show that FPGA resource usage is increasing linearly
with the number of CePUs. CoPUs with a capability of 2 could save area that is released by
omitting exception processing units and privileged instructions in the execution unit. A CoPU
with capability 1 could considerably reduce resource usage by omitting isntruction fetch unit and
its read port interface. Since the number of read and write ports also influences the timing of
the MEMU, the maximum frequency for the ParaNut VHDL implementation could be increased
as well.

8.2 Implementation of CoPUs and Modes

CoPUs have not been implemented yet for both SystemC and VHDL model. CoPUs with
different capabilities are an essential building block of the ParaNut architecture and offer great
potential in helping to reduce area consumption and improve timing. This is beneficial for
implementations that need to fit on FPGAs with very limited resources. Moreover, in order
to properly support the different ParaNut CPU modes, synchronisation mechanisms must be
implemented. This is especially important for the linked and threaded modes. Since the unique
SIMD concept of the ParaNut architecture is the main motivation for its design, this would be
a very important asset to the ParaNut VHDL implementation.

8.3 Verification of Exception Handling

Only a subset of exceptions are implemented in the ParaNut SystemC and VHDL models.
Handling of exceptions has only been tested in simulation for system calls, traps, alignment
errors, and illegal operations exceptions. Their correct operation in hardware remains to be
verified.
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8.4 Additional Units

The OR1k architecture specifies a set optional units that provide standard features for modern
CPUs. Many of them have not yet been implemented but would widen the field of application
for the ParaNut processor.

A port of the Linux kernel exists for the OR1K architecture. In order to be able to run Linux on
the ParaNut, a memory management unit (MMU) would be necessary. The OR1k architecture
specifies that translation lookaside buffer (TLB) misses can be handled by logic in hardware
or cause an exception so that the TLB reload is handled in software. The latter approach
would be preferred from an economical hardware resource usage point of view. This would
merely require implementing the TLB and the logic required for comparing tag information
and checking for violation against protection information. Page faults also generate MMU
exceptions. MMU exceptions require the effective address of the operation that caused the
exception to be saved into the EEAR register. Since the ParaNut has a store buffer and the
CPU may already have completed the instruction before the address is actually written to
memory, MMU exceptions would require the processor to retrieve not only the address, but also
the program counter and state of the supervisor register for the store instruction that caused
the exception.

The current implementation of the ParaNut processor allows for uploading programs to main
memory through a JTAG based debug adapter and the GNU debugger (GDB) from the Open-
RISC toolchain. While this is sufficient for testing the hardware, software developers need to
be able to debug software running on the target platform. To this end, support for the op-
tional debug unit would have to be implemented to enable basic debugging through software
breakpoints.

Timing measurements for the benchmarks have been conducted using an external timer core
that can only be accessed over the bus. While this is sufficient for measuring the execution
times of benchmarks that run several seconds, it may be desirable for real time applications to
have a high precision tick timer unit on a per-CPU basis. Scheduling of tasks for an operating
system would also require an independent clock source for every CPU that can additionally
generate interrupts. Implementing a programmable interrupt controller would be mandatory.
Support from the software side is already given through the OpenRISC support library that is
included in the OpenRISC newlib toolchain.

8.5 Supporting Additional Platforms

The ParaNut has been successfully run embedded on a system-on-chip with the ORPSoC as
a peripheral platform. Support for other platforms would further enhance the range of ap-
plication of the ParaNut. Actually, the GRLIB from Aeroflex Gaisler was considered as an
alternative platform for the ParaNut to be evaluated on for this work. The GRLIB features
a considerable amount of IP cores that are based on the AMBA on-chip bus. This would
require implementing a bus interface for the ParaNut that is AMBA compliant. Alternat-
ively, a Wishbone to AMBA bridge can be used that is available from the OpenCores project.
Moreover, the GRLIB build system natively supports a broad range of simulation and syn-
thesis tools from different FPGA manufacturers which can help in bringing the ParaNut to new
platforms.
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This chapter is intended to guide the reader through the process of setting up a working en-
vironment for the ParaNut. The digital media provided with this work includes pre-built
FPGA bitfiles and software. In case the reader is interested in the underlying environment
for e.g. customising their own SoC or adding support for a new board, continue reading sec-
tion A.4. In any case all readers should first read section A.2 in order to determine whether
and what additional steps are required to get the ParaNut VHDL implementation working on
an FPGA.

A.1 Development Tools

This section gives a complete overview of the tools involved in generating bitfiles, running the
ParaNut on hardware, and executing programs on the evaluation platform.

A.1.1 ORPSoC

ORPSoC is the “OpenRISC Reference Platform System On Chip”. It provides a peripheral
system for OpenRISC compatible processors and a framework for simulating as well as synthes-
izing systems for FPGAs. At the time of this writing, there are 2 versions of the project, namely
“ORPSoCv2” and “ORPSoCv3”, which has just been released shortly before the completion of
this work. Although ORPSoCv2 is no longer actively developed and superseded by ORPSoCv3,
this HOWTO is based on the former version and may provide a starting point for porting to
the latter. Instructions for downloading, installing, and operating both versions can be found
on the OpenCores website at [http://opencores.org/or1k/ORPSoC] . Some modifications have
been made to the platform which are already included in the ORPSoC version found on the
digital media:

• Added support for the Digilent XUPV5-board (ML509).

• Modification of hardware synthesis build scripts to better cope with VHDL source files

• Addition of the ParaNut and a small timer core with support libraries

A.1.2 OpenRISC GNU tool chain

Compiling C/C++/Assembler programs as well as downloading the resulting binaries to the
ParaNut SoC running on the FPGA board can be done with the OpenRISC GNU tool chain.
Throughout this work, the bare"=metal version based on the Newlib library was used. The
tools are commonly prefixed “or32-elf-”. A comprehensive source of information can be
found on the OpenCores website at [http://opencores.org/or1k/OpenRISC_GNU_tool_chain]
where instructions can be found on how to obtain pre-built binaries as well as compiling from
source.
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After having installed the toolchain, there is one thing to do when adding support for a new
board: Edit one of the existing board support library files in newlib-1.x.0/libgloss/
or32, e.g. ml501.S. This file defines a few symbols that help Newlib to set up the C runtime
environment for compiled programs. This is what the file looks like after adapting it to the
design that is used on the ML509 board in this work:
/*
* Define symbols to be used during startup - file is linked at compile time

*
*/

.global _board_mem_base

.global _board_mem_size

.global _board_clk_freq

_board_mem_base: .long 0x0
_board_mem_size: .long 0x10000000 /* 256MB */

_board_clk_freq: .long 66666666

/* Peripheral information - Set base to 0 if not present*/
.global _board_uart_base
.global _board_uart_baud
.global _board_uart_IRQ

_board_uart_base: .long 0x90000000
_board_uart_baud: .long 115200
_board_uart_IRQ: .long 2

Here, only _board_mem_size was changed to 256MB, which is the size of the ML509’s DDR2
memory module. It may not be larger than the actual memory size because it is used to set
up the stack pointer which is automatically set to the top of the RAM (_board_mem_size -
_board_mem_base) during C runtime initialisation.
_board_clk_freq actually refers to the clock speed at which the Wishbone BUS/CPU is
running, not the used clock input to the FPGA. Because the UART module’s clock input is
connected to the Wishbone BUS’ clock and its internal baudrate generator needs to be set up
to the desired baud rate (here: 115200) it is important that this variable is set correctly for
getting sane output via UART. The UART’s base address is kept unchanged. Save this file to
something with the name of the board name in it, e.g. ml509.S.

The next step will be to create an object file that can then be linked into the executable of the
program:
$ or32-elf-as -o ml509.o ml509.S
$ or32-elf-ar -q libboard.a ml509.o

The resulting archive is then placed in a new folder under install_path/or32-elf/lib/
boards/boardname. Every time the compiler/linker is invoked with -mnewlib -mboard=ml509
linker flags, the symbols in that archive will be used.

A.1.3 or_debug_proxy

The missing link between GDB and the USB debug adapter that will later physically connect to
the target is “or_debug_proxy” It is intented for use with the OpenRISC USB"=JTAGDebug-
ger only. The project can be checked out from the OpenCores SVN repository:
$ svn co http://opencores.org/ocsvn/openrisc/openrisc/trunk/or_debug_proxy

A README file is included that lists all required dependencies for compilation and steps on how
to build and install.
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A.2 Prerequisites

In order to be able to run software on the ParaNut processor some requirements must be met.
These are mainly the hardware and non-free software which cannot be distributed with the
digital media provided with this work. Be sure that the following requirements are met when
trying out the ParaNut. On every item, an explanation is given and hints to possible solutions
are provided in case the requirements are not met:

A.2.1 XUPV5-LX110T FPGA (ML509) board

Of course the ParaNut should be able to run on other FPGAs/boards, too, but this will require
some additional work. Some of the necessary steps to do that are outlined in section A.4
but they cannot cover the full process because it is very specific to the actual vendor/board
used.

A.2.2 Linux operating system/Cygwin Windows and libraries

The tools used to create FPGA bitfiles and software for both the ParaNut as well as debugging
require some sort of Linux operating system and libraries. While the Xilinx ISE tools are
available natively for Windows, at least some virtual machine running Linux or Cygwin are
necessary in order to run the GDB stub or_debug_proxy and the OpenRISC NewLib toolchain
programs. For a complete documentation please see the README file in the or_debug_proxy
and ToolchainOr32Bare directories on the digital media.

A.2.3 OpenRISC GNU toolchain

The OpenRISC GNU toolchain that is used to compile programs for the ParaNut must be
obtained from the OpenCores website at [http://opencores.org/or1k/OpenRISC_GNU_tool_-
chain] . There are different versions of the toolchain, so be sure to choose the right version
for your operating system. Follow the instructions on the site to install the toolchain. After
having installed the toolchain, copy the file paranut/sw/newlib/crt0.o from the CD to the
/opt/or32-elf/lib/ folder. (Note: "/opt/ may be a different folder for your installation).
This is the object file for the C runtime initialisation code that is getting linked to a program
when using the Newlib library. It is ensures that different memory locations for the stack of
each CPU will be used for a multi-core ParaNut. A single-core ParaNut will also work without
the modified C runtime.

A.2.4 OpenRISC USB-JTAG Debugger

Downloading software to the ParaNut SoC running on the FPGA board is done via a JTAG
debug interface. Presently, the only hardware JTAG debug adapter working with the debug
application or_debug_proxy is the OpenRISC USB"=JTAG Debugger[22], which is unlikely
to change. The newer version of the ORPSoCv3 uses the “Advanced Debug System” which
works with a broader range of JTAG debug adapters but this would first require porting the
ParaNut ORPSoCv2 project to ORPSoCv3. Moreover, a suitable cable with fly-leads to con-
nect from the adapter to the expansion header pins on the FPGA board is required. The
debugger also contains a USB-serial-converter which can be used to get printouts from the
UART.

http://opencores.org/or1k/OpenRISC_GNU_tool_chain
http://opencores.org/or1k/OpenRISC_GNU_tool_chain
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A.2.5 Xilinx ISE tools with full license

Since the ML509 board features a Xilinx Virtex-5 XC5VLX110T FPGA, which is not part of
the “Webpack” license, a 30-day evaluation or full license is required for the Xilinx ISE tools.
However, the ML501 board, which is also supported by ORPSoCv2, does not require a full
license and it should be very easy to port to.

A.3 Getting Started

If all of the requirements from the previous section are fulfilled there are just a few steps left
before running the ParaNut on the board.

A.3.1 Connecting the hardware

JTAG Debuger Interface

The OpenRISC USB-JTAG Debugger is connected to headers J4 and J7 on the ML509 board
as listed in table A.1.

Table A.1: JTAG connection to the ML509 board
JTAG pin ML509 board pin
3. JTAG TDO HDR2_6 (header J4)
9. JTAG TDI HDR2_8 (header J4)
5. JTAG TMS HDR2_10 (header J4)
1. JTAG TCK HDR2_12 (header J4)
4. VCCIO JTAG Any pin of left column of J4
2. GND Any pin of header J7

All pins of the left column of header J4 are tied to ground. Connect one of them to the GND pin
on the USB debugger. All pins of header J7, which is to the right of J4, are connected to 2.5V DC.
Connect the VCCIO pin of the debugger to any of the pins on J7.

UART

A serial terminal can be connected either by using the UART embedded in the OpenRISC USB-
JTAG Debugger, or by using a serial cable. For the USB debugger, connect the fly-leads from
the debugger according to table A.2

Table A.2: UART connection to the ML509 board
RS232 pin ML509 board pin
7. UART RX HDR2_2 (header J4)
8. UART TX HDR2_4 (header J4)

When using a serial cable, simply connect it to the serial port connector P3.

The host PC must use a serial terminal application in order to receive data from the UART.
The settings for the serial connection are:
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• Baudrate: 115200

• Parity: none

• Bits: 8

• Stopbits: 1

• Flow control: none

Figure A.1 shows a picture of the set up hardware platform.

Figure A.1: The ML509 board with the JTAG debugger and serial cable connected.

A.3.2 Configuring The Hardware

This section assumes that the tools and software provided with the CD are used. First, copy
the contents of the CD to a local folder on the hard drive e.g.:
$ cp -r /cdroot/orpsocv2 ~/destination-folder
$ cd ~/destination-folder

It is assumed that as of now all subsequent commands are relative to the destination folder.

The paranut/bitfiles directory contains pre-built bitfiles for the ML509 board. The
directory includes 4 different bitfiles with ParaNut processors that have 1 to 8 cores and
are clocked at 25 MHz. A bitfile can be loaded onto the FPGA using the Xilinx Impact
tool.

A.3.3 Downloading Programs

Now that the FPGA is configured, download a program to the ParaNut. This task is accom-
plished by GDB and involves two pieces of software. For the following steps, it is assumed
that the OpenRISC GNU toolchain is installed as described in section A.2. Add the paths
for the Newlib toolchain and the or_debug_proxy application to your PATH environment
variable:
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$ export PATH="${PATH}:/opt/or32-elf/bin"
$ export PATH="${PATH}:/cdroot/or_debug_proxy"

Or, if the changes should be permanent across logins, simply add the two lines above to your
~/.bashrc and start a new terminal.

First, we need to provide a GDB stub that allows GDB to connect to the hardware. It is advised
to open up a new terminal for the following command as the current terminal will be occupied
after executing:
$ or_debug_proxy -r 5000 -b

If there are no errors, connect to the board via GDB from another terminal and download a
program:
$ or32-elf-gdb -ex "target remote :5000" -ex "load" paranut/sw/bin/hello_newlib

Be sure to start a serial port terminal to be able to get “printf” output. The serial port uses a
baud rate of 115200, 8 bits, 1 stopbit, no parity and no flow control. A press on the reset button
on the board should get the processor to start executing the program. However, it is advised
that the bifile is simply re-download to the FPGA as this will also purge the cache (handling
of cache flushing is not yet implemented in the hardware and may lead to unexpected results).
The folder paranut/sw/bin/ contains further precompiled binaries that are ready to execute
on the ParaNut.

A.4 Customising the SoC

If the reader wants to try out a different configuration of the ParaNut other than the provided
ones, do so by creating a new board build in the boards path. This is achieved by simply
copying over one of the existing board builds to a new directory:
$ cp -r orpsocv2/boards/xilinx/ml509_paranut orpsocv2/boards/xilinx/

ml509_paranut_custom

Inside of each board build folder is a local overlay of RTL modules located in board-build/
rtl. Modules which are placed in it take precedence over the same modules also found in
the global RTL module path orpsocv2/rtl. In the new custom build path edit the file
rtl/vhdl/include/paranut_config.vhd. It defines a number of constants that control
certain aspects of the ParaNut SoC. Debug options do not affect sythesis and can be completely
ignored. Where options are not self-explanatory, comments are used to explain their function.
For a full explanation on every config item, see section 5.2. If porting to a different board special
care should be taken about the following two constants:

CFG_NUT_MEM_SIZE
This has to be set to the size of the RAM. E.g., this can be the size of the onboard DDR
RAM or the size of generated on-chip Block RAM when using the Wishbone RAM module.

CFG_NUT_LITTLE_ENDIAN
This parameter must be set to reflect the endianess of the peripheral system so that correct
byte select signals for the Wishbone bus are generated by the CPU. This can normally be
left as-is.
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All other parameters may be set freely within their designated range but keep in mind that
setting values too high may result in a design that does not fit onto the target FPGA or fails
to meet timing requirements. E.g., doubling the number of CPU cores may easily double the
number of slices used. Cache memory is normally implemented as Block RAM if the given
target FPGA technology supports this and by incrementing any of the parameters CFG_-
MEMU_CACHE_BANKS_LD, CFG_MEMU_CACHE_SETS_LD, or CFG_MEMU_CACHE_WAYS_LD by
1, Block RAM usage is usually doubled, among some additional slice overhead. In the example
above, a 16KB 4-way associative cache with a line size of 16 bytes (4 words) will be generated
(cache size is 22+8+2+2).

It’s time to finally make a bitfile for the design. If the design should be built from ground up start-
ing with XST synthesis, first clean the synthesis working directory. In case of errors that do not
seem to make much sense during synthesis, also clean that directory:
$ make -C boards/xilinx/ml509_paranut_custom/syn/xst/run clean
$ make -C boards/xilinx/ml509_paranut_custom/backend/par/run orpsoc.bit



B ParaNut VHDL simulation
A testbench for the ParaNut VHDL implementation has been created in the process of this
work. It was used to validate the correct operation of the ParaNut. In order to be able to use
the testbench you need to either have the Xilinx ISE tools or GHDL installed. The testbench
can execute programs that are compiled using the or32-elf-gcc compiler. However, before the
program can be used in the VHDL testbench, a VHDL representation of the memory content
of the program has to be created. This is achieved by the ParaNut SystemC testbench. It
can be obtained from the website of the Efficient Embedded Systems workgroup of the Univer-
sity of Applied Sciences Augsburg [http://ees.informatik.hs-augsburg.de/paranut/index.html.]

The testbench needs at least SystemC-2.2 installed in order to compile. When compiled, execute
the testbench with the program to be simulated:
$ make
$ ./paranut_tb -v /path/to/program.elf

The "-v" switch will generate the VHDL dump. The file will be named program_mem_dump.
vhd and created in the current folder.

The ParaNut VHDL testbench is located in the paranut/rtl/vhdl/tb/paranut folder.
The testbench will pick up the file prog_mem.vhd as program to be simulated. Copy the file
that was generated by the SystemC testbench to the VHDL testbench folder:
$ cd paranut/project/rtl/vhdl/tb/paranut
$ cp ../../../../systemc/program_mem_content.vhd .

The testbench can be run with either the Xilinx ISIM or GHDL /vhrefhttp://gna.org/projects/ghdl/
VHDL simulators. However, it should be noted that GHDL may have trouble executing test-
benches with programs that are big in size. The GUI target version for GHDL needs the GTK-
Wave [http://gtkwave.sourceforge.net/] wave viewer program.

The testbench uses make targets to run the simulation. There are two make targets for ISIM.
One is for running the command-line version of ISIM, the other for running the GUI ver-
sion:

For the command line version type:
$ make isim-cl

For the GUI version type:
$ make isim-gui

GHDL has the same kind of make targets.

For the command line version type:
$ make ghdl-cl

For the GUI version type:
$ make ghdl-gui
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C Merge Sort program listing

Listing C.1: merge_sort.c
1 #include <stdio.h>
2 #include <stdlib.h>
3
4 #include "paranut.h"
5 #include "paranut_hist.h"
6 #include "counter.h"
7
8 #define CTR_BA 0xf0000000
9 #define BUS_FREQ_HZ 25000000

10
11 // SIZE may be only a power of two!
12 #define SIZE 0x8000
13 #define MAX_NUMBER 10000
14
15 int a[SIZE];
16 int tmp[SIZE];
17 int sorted;
18 unsigned int start_time, stop_time;
19
20 void do_msort(int n0, int n1, int m)
21 {
22 int i0, i1, j;
23
24 i0 = n0;
25 i1 = m+1;
26 j = n0;
27 while (i0 <= m && i1 <= n1) {
28 if (a[i0] <= a[i1]) tmp[j++] = a[i0++];
29 else tmp[j++] = a[i1++];
30 }
31 while (i0 <= m) tmp[j++] = a[i0++];
32 while (i1 <= n1) tmp[j++] = a[i1++];
33 for (j = n0; j <= n1; j++) a[j] = tmp[j];
34 }
35
36 void do_divide (int n0, int n1, int c, int l, int cpu_id, int n_cpus)
37 {
38 int m;
39
40 if (n1 > n0) {
41 m = (n0 + n1) / 2;
42
43 if (l >= n_cpus) {
44 // Begin sorting for each CPU.
45 if (c == cpu_id) {
46 // Only sort assigned slice.
47 do_divide(n0, m, c, 2*l, cpu_id, n_cpus);
48 do_divide(m+1, n1, c, 2*l, cpu_id, n_cpus);
49 do_msort(n0, n1, m);
50 if (cpu_id != 0 && l == n_cpus)
51 // CPU finished sorting its sub-tree.
52 pn_sync_set(cpu_id);
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53 } else {
54 return;
55 }
56 } else {
57 do_divide(n0, m, 2*c, 2*l, cpu_id, n_cpus);
58 do_divide(m+1, n1, 2*c+1, 2*l, cpu_id, n_cpus);
59 if (cpu_id == 0) {
60 // CPU 0 has to wait here for each CPU to be finished before
61 // sorting the remaining array.
62 wait_for_cpu(2*c+1);
63 do_msort(n0, n1, m);
64 }
65 }
66 }
67 }
68
69 int real_main(int cpu_id)
70 {
71 int i;
72
73 if (cpu_id == 0) {
74 counter_init(BUS_FREQ_HZ);
75 sorted = 1;
76 printf("\nGenerating random array of size %d...\n", SIZE);
77 for (i = 0; i < SIZE; i++) {
78 a[i] = rand() % MAX_NUMBER;
79 if (i > 1 && a[i-1] > a[i])
80 sorted = 0;
81 }
82 if (sorted)
83 printf("Random array generation failed.\n");
84 else
85 printf("Random array generated.\n");
86 printf("Running merge sort with %d CPU(s)...\n", pn_get_ncpus());
87 counter_reset(CTR_BA, 0);
88 counter_start(CTR_BA, 0);
89 counter_set_cnt_div(CTR_BA, 0, 2);
90 start_time = counter_get_msecs(CTR_BA, 0);
91 pn_sync_set(0);
92 }
93 // Wait for random array to be generated by CPU 0...
94 wait_for_cpu(0);
95 if (cpu_id == 0) {
96 pn_sync_unset(0);
97 }
98 pn_hist_enable();
99

100 // Begin sorting...
101 do_divide (0, SIZE-1, 0, 1, cpu_id, pn_get_ncpus());
102
103 pn_hist_disable();
104
105 if (cpu_id == 0) {
106 stop_time = counter_get_msecs(CTR_BA, 0);
107 printf("Finished sorting...");
108 // Check if array is actually sorted.
109 sorted = 1;
110 for (i = 1; i < SIZE; i++) {
111 if (a[i-1] > a[i])
112 sorted = 0;
113 }
114 if (sorted)
115 printf(" Correct operation verified.\n");
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116 else
117 printf(" Correct operation could not be verified.\n");
118 printf("Time elapsed: %d ms\n", stop_time - start_time);
119 }
120
121 if (cpu_id == 0) {
122 pn_sync_clear();
123 }
124
125 // Print histogram sequentially for every CPU
126 if (cpu_id != 0) {
127 wait_for_cpu(0);
128 wait_for_cpu(cpu_id-1);
129 }
130 pn_stats_collect();
131 //pn_stats_print();
132 // Last one to print global stats...
133 if (cpu_id == pn_get_ncpus()-1) {
134 pn_global_stats_collect();
135 pn_global_stats_print();
136 }
137 pn_sync_set(cpu_id);
138 // Do not leave before all is done...
139 wait_for_cpu(pn_get_ncpus()-1);
140
141 return sorted-1;
142 }
143
144 int main ()
145 {
146 return real_main(pn_get_cpuid());
147 }



List of Abbreviations

CPI Cycles per instruction

CPU Central processing unit

DLP Data level parallelism

FPGA Field-programmable gate array

ILP Instruction level parallelism

IP core Intellectual property core

ISA Instruction set architecture

ORPSoC OpenRISC Reference Platform SoC

RISC Reduced instruction set computer

SIMD Single instruction, multiple data

SoC System-on-Chip

TLP Thread level parallelism

VLSI Very-large-scale integration

VHDL Very-high-speed integrated circuit hardware description language
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